已知f(x)=ax3+bx2+cx在區(qū)間[0,1]上是增函數(shù),在區(qū)間

(-上是減函數(shù),又.

(1)求f(x)的解析式;

(2)若方程有三個不等實(shí)根,求m的取值范圍.

 

【答案】

;0<m<1

【解析】(1)由題意知0,1是的兩根,再根據(jù),可建立關(guān)于a,b,c的方程,求出a,b,c的值.

(2)在(1)的基礎(chǔ)上,畫出函數(shù)f(x)的草圖,求出極大值和極小值.只需滿足f(x)極小值<m<f(x)極大值

 

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

已知f(x)=ax3+ln(
x2+1
+x)+2
,且f(-5)=m,則f(5)+f(-5)的值為(  )
A、4B、0C、2mD、-m+4

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知f(x)=ax3-bx+
3x
+3
,且f(-1)=7,則f(1)=
-1
-1

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知f(x)=ax3+
b
x
 
(ab≠0)
,對任意a,b∈R(a≠b),都有
f(a)-f(b)
a-b
>0
.若x1+x2<0,且x1?x2<0,則f(x1)+f(x2)的值(  )
A、恒小于0B、恒大于0
C、可能為0D、可正可負(fù)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知f(x)=ax3+bx2+cx(a≠0)在x=±1時取得極值,且f(1)=-1.

(1)試求常數(shù)a、b、c的值;

(2)試判斷x=±1是函數(shù)的極小值還是極大值,并說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2011年河北省高二下學(xué)期3月月考數(shù)學(xué)卷 題型:解答題

已知f(x)=ax3+bx2+cx(a≠0)在x=±1時取得極值,且f(1)=—1.

(1)試求常數(shù)a、b、c的值;

(2)試判斷x=±1是函數(shù)的極小值點(diǎn)還是極大值點(diǎn),并說明理由

 

查看答案和解析>>

同步練習(xí)冊答案