在直角坐標系內,與到點A(1,1)和直線lx2y3=0距離相等的點的軌跡對應的圖形是________

答案:一條過A且垂直于直線l的直線#直線
解析:

點金:有些同學以為本題符合拋物線定義,故軌跡是拋物線.事實上拋物線定義中的定點是不在定直線上的,而本題的A(11)在直線lx2y3=0上,所以到點A(1,1)和直線lx2y3=0距離相等的點的軌跡不是拋物線,而是一條過A且垂直于直線l的直線.


練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

在A、B、C、D四小題中只能選做2題,每小題10分,共計20分.請在答題紙指定區(qū)域內 作答.解答應寫出文字說明、證明過程或演算步驟.
A.如圖,圓O的直徑AB=6,C為圓周上一點,BC=3,過C作圓的切線l,過A作l的垂線AD,AD分別與直線l、圓交于點D、E.求∠DAC的度數(shù)與線段AE的長.
B.已知二階矩陣A=
2a
b0
屬于特征值-1的一個特征向量為
1
-3
,求矩陣A的逆矩陣.

C.已知極坐標系的極點在直角坐標系的原點,極軸與x軸的正半軸重合,曲線C的極坐標方程ρ2cos2θ+3ρ2sin2θ=3,直線l的參數(shù)方程為
x=-
3
t
y=1+t
(t為參數(shù),t∈{R}).試求曲線C上點M到直線l的距離的最大值.
D.(1)設x是正數(shù),求證:(1+x)(1+x2)(1+x3)≥8x3
(2)若x∈R,不等式(1+x)(1+x2)(1+x3)≥8x3是否仍然成立?如果仍成立,請給出證明;如果不成立,請舉出一個使它不成立的x的值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知正三棱錐P-ABC的底面邊長為6,側棱長為
13
.有一動點M在側面PAB內,它到頂點P的距離與到底面ABC的距離比為2
2
:1

精英家教網(wǎng)
(1)求動點M到頂點P 的距離與它到邊AB的距離之比;
(2)在側面PAB所在平面內建立為如圖所示的直角坐標系,求動點M的軌跡方程.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

(選做題)在A、B、C、D四小題中只能選做2題,每小題10分,共計20分.請在答卷紙指定區(qū)域內作答.解答應寫出文字說明、證明過程或演算步驟.
(B)(選修4-2:矩陣與變換)
二階矩陣M有特征值λ=8,其對應的一個特征向量e=
1
1
,并且矩陣M對應的變換將點(-1,2)變換成點(-2,4),求矩陣M2
(C)(選修4-4:坐標系與參數(shù)方程)
已知極坐標系的極點在直角坐標系的原點,極軸與x軸的正半軸重合,曲線C的極坐標方程為ρ2cos2θ+3ρ2sin2θ=3,直線l的參數(shù)方程為
x=-
3
t
y=1+t
(t為參數(shù),t∈R).試在曲線C上一點M,使它到直線l的距離最大.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

精英家教網(wǎng)如圖在直角坐標系xoy中,圓O與x軸交于A、B兩點,且|AB|=4,定直線l垂直于x軸正半軸,且到圓心O的距離為4,點P是圓O上異于A、B的任意一點,直線PA、PB分別交l于點M、N.
(1)若∠PAB=30°,求以MN為直徑的圓的方程;
(2)當點P變化時,求證:以MN為直徑的圓必過圓O內一定點.

查看答案和解析>>

科目:高中數(shù)學 來源:2011屆廣東省高考猜押題卷文科數(shù)學(二)解析版 題型:解答題

(本題滿分12分)
在直角坐標系中,動點到兩圓的圓心的距離的和等于.
(Ⅰ) 求動點的軌跡方程;
(Ⅱ) 以動點的軌跡與軸正半軸的交點C為直角頂點作此軌跡的內接等腰直角三角形ABC,試問:這樣的等腰直角三角形是否存在?若存在,有幾個?若不存在,請說明理由.

查看答案和解析>>

同步練習冊答案