(12分)已知函數(shù).
(1)當時,求的值;
(2)當時,求的最大值和最小值。

:(1)當,即時,
,,————————————————4分
(2) 令,,
 ——————————8分
上單調遞減,在上單調遞增
,即時, ——————————————10分
,即時, ——————————————12分
練習冊系列答案
相關習題

科目:高中數(shù)學 來源:不詳 題型:單選題

已知函數(shù)fx)=x2bx的圖象在點A(1,f(1))處的切線與直線3xy+2=0平行,若數(shù)列的前n項和為Sn,則S2009的值為(   )
A.B.C.D.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

(10分)設函數(shù)的定義域是,且對任意的正實數(shù)都有恒成立. 已知,且時,.
(1)求的值K]
(2)判斷上的單調性,并給出你的證明
(3)解不等式.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

(本小題滿分10分)一艘輪船在航行中的燃料費和它的速度的立方成正比,已知在速度為每小時10公里時的燃料費是每小時6元,而其他與速度無關的費用是每小時96元,問此輪船以何種速度航行時,能使行駛每公里的費用總和最小?

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

(本題滿分12分)
函數(shù),其中為常數(shù).
(1)證明:對任意,的圖象恒過定點;
(2)當時,判斷函數(shù)是否存在極值?若存在,求出極值;若不存在,說明理由;
(3)若對任意時,恒為定義域上的增函數(shù),求的最大值.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:單選題

已知對任意實數(shù)x,都有f(-x)=-f(x),g(-x)=g(x),且x>0時 ,f′(x)>0,g′(x)>0,則x<0時(  )
A.f′(x)>0,g′(x)>0 B.f′(x)>0,g′(x)<0
C.f′(x)<0,g′(x)>0D.f′(x)<0,g′(x)<0

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:單選題

函數(shù)的值為( )
A.B.C.D.18

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

(本小題滿分12分)設x=1和x=2是函數(shù)f(x)=alnx+bx2+x的兩個極值點
(1)求a,b的值
(2)求f(x)的單調區(qū)間。

查看答案和解析>>

同步練習冊答案