已知橢圓的左、右焦點(diǎn)分別為F1、F2,點(diǎn)P在橢圓上.若∠PF1F2=90°,則點(diǎn)Px軸的距離為_(kāi)_________.

答案:
解析:

<rt id="omsxe"></rt>

    解析:代入橢圓方程得|PF1|=.
    提示:
    練習(xí)冊(cè)系列答案
    相關(guān)習(xí)題

    科目:高中數(shù)學(xué) 來(lái)源: 題型:

    已知橢圓的左、右焦點(diǎn)分別為F1,F(xiàn)2,橢圓的離心率為
    1
    2
    且經(jīng)過(guò)點(diǎn)P(1,
    3
    2
    )
    .M為橢圓上的動(dòng)點(diǎn),以M為圓心,MF2為半徑作圓M.
    (1)求橢圓C的標(biāo)準(zhǔn)方程;
    (2)若圓M與y軸有兩個(gè)交點(diǎn),求點(diǎn)M橫坐標(biāo)的取值范圍;
    (3)是否存在定圓N,使得圓N與圓M相切?若存在.求出圓N的方程;若不存在,說(shuō)明理由.

    查看答案和解析>>

    科目:高中數(shù)學(xué) 來(lái)源: 題型:

    已知橢圓的左、右焦點(diǎn)分別為,其右準(zhǔn)線(xiàn)上上存在點(diǎn)(點(diǎn) 軸上方),使為等腰三角形.

    ⑴求離心率的范圍;

        ⑵若橢圓上的點(diǎn)到兩焦點(diǎn)的距離之和為,求的內(nèi)切圓的方程.

    查看答案和解析>>

    科目:高中數(shù)學(xué) 來(lái)源:2011-2012學(xué)年山東省高三下學(xué)期假期檢測(cè)考試?yán)砜茢?shù)學(xué)試卷 題型:解答題

    已知橢圓的左、右焦點(diǎn)分別為,, 點(diǎn)是橢圓的一個(gè)頂點(diǎn),△是等腰直角三角形.

    (Ⅰ)求橢圓的方程;

    (Ⅱ)過(guò)點(diǎn)分別作直線(xiàn),交橢圓于,兩點(diǎn),設(shè)兩直線(xiàn)的斜率分別為,,且,證明:直線(xiàn)過(guò)定點(diǎn)().

     

    查看答案和解析>>

    科目:高中數(shù)學(xué) 來(lái)源:2010-2011學(xué)年福建省三明市高三上學(xué)期三校聯(lián)考數(shù)學(xué)理卷 題型:解答題

    (本題滿(mǎn)分14分)     已知橢圓的左、右焦點(diǎn)分別為F1、F2,其中

    F2也是拋物線(xiàn)的焦點(diǎn),M是C1與C2在第一象限的交點(diǎn),且  

    (I)求橢圓C1的方程;   (II)已知菱形ABCD的頂點(diǎn)A、C在橢圓C1上,頂點(diǎn)B、D在直線(xiàn)上,求直線(xiàn)AC的方程。

     

    查看答案和解析>>

    科目:高中數(shù)學(xué) 來(lái)源:2010-2011學(xué)年云南省德宏州高三高考復(fù)習(xí)數(shù)學(xué)試卷 題型:解答題

    (本小題滿(mǎn)分12分)

    已知橢圓的左、右焦點(diǎn)分別為,離心率,右準(zhǔn)線(xiàn)方程為

    (I)求橢圓的標(biāo)準(zhǔn)方程;

    (II)過(guò)點(diǎn)的直線(xiàn)與該橢圓交于M、N兩點(diǎn),且,求直線(xiàn)的方程.

     

    查看答案和解析>>

    同步練習(xí)冊(cè)答案