Processing math: 31%
9.設(shè)全集U=R,集合A={x|x2-x-2=0},B={y|y=x+3,x∈A},則A∪B={-1,2,5}.

分析 求出集合A,B,根據(jù)并集運(yùn)算進(jìn)行求解.

解答 解:全集U=R,集合A={x|x2-x-2=0}={-1,2},
則B={y|y=x+3,x∈A}={2,5},
則A∪B={-1,2,5},
故答案為:{-1,2,5}.

點(diǎn)評 本題主要考查集合的基本運(yùn)算,比較基礎(chǔ).

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

3.下列函數(shù)f(x)中,滿足“對任意的x1,x2∈(0,+∞)時,均(x1-x2)[f(x1)-f(x2)]>0”的是( �。�
A.f(x)=(12xB.f(x)=x2-4x+4C.f(x)=|x+2|D.f(x)=log{\;}_{\frac{1}{2}}}x

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

20.長度為3的線段AB的端點(diǎn)A、B分別在x軸、y軸上運(yùn)動,若點(diǎn)P滿足BP=2PA.設(shè)動點(diǎn)P軌跡為曲線C.
(I)求曲線C的方程;
(Ⅱ)點(diǎn)P在曲線C上,點(diǎn)F的坐標(biāo)為(3,0),若點(diǎn)Q是直線l:x=433上任意一點(diǎn),且滿足PF⊥FQ,是判斷直線PQ與曲線C的位置關(guān)系.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

17.給出四個命題:
(1)x2+2x2+1的最小值為2;      (2)2-3x-4x的最大值為2-43
(3)logx10+lgx的最小值為2;   (4)sin2x+4sin2x的最小值為4.
其中真命題的個數(shù)是( �。�
A.3B.2C.1D.0

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

4.\frac{2sin20°+sin40°}{sin50°}\sqrt{3}

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

14.如圖,正方形ABCD中,點(diǎn)E是DC的中點(diǎn),點(diǎn)F是BC的一個三等分點(diǎn)(靠近B),那么\overrightarrow{EF}=( �。�
A.\frac{1}{2}\overrightarrow{AB}-\frac{1}{3}\overrightarrow{AD}B.\frac{1}{4} \overrightarrow{AB}+\frac{1}{2}\overrightarrow{AD}C.\frac{1}{3} \overrightarrow{AB}+\frac{1}{2}\overrightarrow{DA}D.\frac{1}{2} \overrightarrow{AB}-\frac{2}{3}\overrightarrow{AD}

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

1.已知集合A={x|x2-x-2<0},B={x|\frac{1}{x-1}≤1},則A∩B=( �。�
A.(-1,1]B.(-1,1)C.D.[-1,2]

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

18.若函數(shù)f(x)=\frac{1}{2}ex+x-6的零點(diǎn)在區(qū)間(n,n+1)(n∈N*)內(nèi),則n=2.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

19.定義在R上的奇函數(shù)f(x)滿足f(x+1)=f(1-x),且x∈[0,1]時,f(x)=\sqrt{2x},則f(11.5)=-1.

查看答案和解析>>

同步練習(xí)冊答案