11.已知a,b∈R,函數(shù)f(x)=|x-a|+|a-$\frac{1-b}{2}}$|是偶函數(shù),則2015-3ab2的取值范圍是{2015}.

分析 利用偶函數(shù)的定義求得a=0,可得2015-3ab2的取值.

解答 解:∵函數(shù)f(x)=|x-a|+|a-$\frac{1-b}{2}}$|是偶函數(shù),∴a=0,f(x)=|x|+|$\frac{b-1}{2}$|.
∴2015-3ab2=2015-0=2015,
故答案為:{2015}.

點(diǎn)評(píng) 本題主要考查函數(shù)的奇偶性的應(yīng)用,屬于基礎(chǔ)題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

1.已知f(x)=1n(1+x)-$\frac{x(x+a)}{a(x+1)}$(a>1).
(1)討論函數(shù)f(x)的單調(diào)性;
(2)證明:(1+$\frac{1}{{2}^{2}}$)(1+$\frac{1}{{3}^{2}}$)(1+$\frac{1}{{4}^{2}}$)…(1+$\frac{1}{{n}^{2}}$)<e${\;}^{\frac{3}{4}}$(n∈N*,n≥2).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

2.已知a>0,a≠1且loga3<loga2,若函數(shù)f(x)=logax在區(qū)間[a,3a]上的最大值與最小值之差為1.
(1)求a的值;
(2)若1≤x≤3,求函數(shù)y=(logax)2+loga$\sqrt{x}$-2的值域.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

19.設(shè)P為△ABC所在平面內(nèi)一點(diǎn),且$3\overrightarrow{PA}+3\overrightarrow{PB}+\overrightarrow{PC}=\overrightarrow 0$,則△PAC的面積與△ABC的面積之比為( 。
A.$\frac{3}{7}$B.$\frac{4}{7}$C.$\frac{1}{6}$D.$\frac{5}{6}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

6.若點(diǎn)(a,9)在函數(shù)y=3x的圖圖象上,則$sin\frac{aπ}{6}-({a+1})tan\frac{aπ}{12}$=-$\frac{\sqrt{3}}{2}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

16.已知函數(shù)f(x)=Asin(wx+φ)(A>0,w>0,0<φ<$\frac{π}{2}$)的最小正周期為π,且圖象上一個(gè)最低點(diǎn)為$M(\frac{2π}{3},-2)$
(1)求f(x)的解析式
(2)當(dāng)$x∈[{0,\frac{π}{2}}]$,求f(x)的值域.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

3.已知命題p:?x∈R,x2-x+1>0,則¬p為( 。
A.?x∉R,x2-x+1>0B.?x0∉R,${x_0}^2-{x_0}+1≤0$
C.?x∈R,x2-x+1≤0D.?x0∈R,${x_0}^2-{x_0}+1≤0$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

20.已知函數(shù)$f(x)=ln(\sqrt{1+{x^2}}-x)+4$,f(lg(log210))=5,則f(lg(lg2))=( 。
A.-5B.-1C.3D.4

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

1.已知函數(shù)f(x)的圖象如圖,則它的一個(gè)可能的解析式為( 。
A.y=2$\sqrt{x}$B.y=4-$\frac{4}{x+1}$C.y=log3(x+1)D.y=$\root{3}{x}$

查看答案和解析>>

同步練習(xí)冊(cè)答案