1.已知函數(shù)f(x)的圖象如圖,則它的一個(gè)可能的解析式為(  )
A.y=2$\sqrt{x}$B.y=4-$\frac{4}{x+1}$C.y=log3(x+1)D.y=$\root{3}{x}$

分析 由圖可得,y=4為函數(shù)圖象的漸近線,逐一分析四個(gè)函數(shù)是否滿足條件,可得答案.

解答 解:由圖可得,y=4為函數(shù)圖象的漸近線,
函數(shù)y=2$\sqrt{x}$,y=log3(x+1),y=$\root{3}{x}$的值域均含4,
即y=4不是它們的漸近線,
函數(shù)y=4-$\frac{4}{x+1}$的值域?yàn)椋?∞,4)∪(4,+∞),
故y=4為函數(shù)圖象的漸近線,
故選:B

點(diǎn)評 本題考查的知識點(diǎn)是函數(shù)的圖象,函數(shù)的值域,難度中檔.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:填空題

11.已知a,b∈R,函數(shù)f(x)=|x-a|+|a-$\frac{1-b}{2}}$|是偶函數(shù),則2015-3ab2的取值范圍是{2015}.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

12.已知函數(shù)$f(x)=\left\{\begin{array}{l}{x^2}-2x+2,x≥a\\ 1-x,x<a\end{array}\right.$(其中a>0),若$f(1)+f(-a)=\frac{5}{2}$,則實(shí)數(shù)a的值為$\frac{1}{2}$或$\frac{3}{2}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

9.若f(x)的定義域?yàn)閇-3,2],則函數(shù)y=f(-2x+1)的定義域?yàn)椋ā 。?table class="qanwser">A.[-3,7]B.$[{-\frac{1}{2}\;,\;\;2}]$C.[-3,2]D.[-1,2]

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

16.設(shè)x,y滿足條件$\left\{\begin{array}{l}x+y-2≥0\\ x-y-2≤0\\ y≤2\end{array}\right.$,則z=2x+3y的最小值是( 。
A.4B.6C.10D.14

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

6.若函數(shù)f(x)=Asin(ωx+φ)(A>0,ω>0,0≤φ<π)滿足下列條件:
(1)f(x)的圖象向左平移π個(gè)單位時(shí)第一次和原圖象重合;
(2)對任意的x∈R都有$f(x)≤f(\frac{π}{6})=2$成立.
則:(Ⅰ)求f(x)的解析式;
(Ⅱ)若銳角△ABC的內(nèi)角B滿足f(B)=1,且∠B的對邊b=1,求△ABC的周長l的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

13.已知橢圓C:$\frac{x^2}{a^2}+\frac{y^2}{b^2}=1(a>b>0)$的離心率為$\frac{{\sqrt{2}}}{2}$,左焦點(diǎn)為F(-1,0),過點(diǎn)D(0,2)且斜率為k的直線l交橢圓于A,B兩點(diǎn).
(1)求橢圓C的標(biāo)準(zhǔn)方程;
(2)在y軸上,是否存在定點(diǎn)E,使$\overrightarrow{AE}•\overrightarrow{BE}$恒為定值?若存在,求出E點(diǎn)的坐標(biāo)和這個(gè)定值;若不存在,說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

10.若半徑為2的球O內(nèi)切于一個(gè)正三棱柱ABC-A1B1C1中,則該三棱柱的體積為48$\sqrt{3}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

1.若0≤θ<2π且同時(shí)滿足cosθ<sinθ和tanθ<sinθ,則θ的取值范圍是( 。
A.($\frac{π}{2}$,π)B.($\frac{π}{4}$,$\frac{3}{4}$π)C.(π,$\frac{3}{2}$π)D.($\frac{3}{4}$π,$\frac{5}{4}$π)

查看答案和解析>>

同步練習(xí)冊答案