已知函數(shù)有如下性質(zhì):如果常數(shù)>0,那么該函數(shù)在0,上是減函數(shù),在,+∞上是增函數(shù).

(1)如果函數(shù)>0)的值域?yàn)?sub>6,+∞,求的值;

(2)研究函數(shù)(常數(shù)>0)在定義域內(nèi)的單調(diào)性,并說明理由;

(3)對函數(shù)(常數(shù)>0)作出推廣,使它們都是你所推廣的函數(shù)的特例.研究推廣后的函數(shù)的單調(diào)性(只須寫出結(jié)論,不必證明),并求函數(shù)是正整數(shù))在區(qū)間[,2]上的最大值和最小值(可利用你的研究結(jié)論).

解(1) 函數(shù)y=x+(x>0)的最小值是2,則2=6, ∴b=log29.

  (2)設(shè)0< x1< x2, y2y1=.

     當(dāng)<x1<x2時(shí), y2>y1, 函數(shù)y=在[,+∞)上是增函數(shù);

     當(dāng)0< x1< x2<時(shí)y2< y1, 函數(shù)y=在(0,]上是減函數(shù).

   又y=是偶函數(shù),于是,該函數(shù)在(-∞,-]上是減函數(shù), 在[-,0)上是增函數(shù).

   (3)可以把函數(shù)推廣為 y=(常數(shù)a>0),其中n是正整數(shù).

   當(dāng)n是奇數(shù)時(shí),函數(shù)y=在(0,]上是減函數(shù),在[,+∞) 上是增函數(shù),

   在(-∞,-]上是增函數(shù), 在[-,0)上是減函數(shù).

   當(dāng)n是偶數(shù)時(shí),函數(shù)y=在(0,]上是減函數(shù),在[,+∞) 上是增函數(shù),

   在(-∞,-]上是減函數(shù), 在[-,0)上是增函數(shù).

   F(x)= +

  =

  因此F(x) 在 [,1]上是減函數(shù),在[1,2]上是增函數(shù).

  所以,當(dāng)x=x=2時(shí), F(x)取得最大值()n+()n;

      當(dāng)x=1時(shí)F(x)取得最小值2n+1.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

(06年上海卷理)(18分)

已知函數(shù)有如下性質(zhì):如果常數(shù)>0,那么該函數(shù)在0,上是減函數(shù),在,+∞上是增函數(shù).

(1)如果函數(shù)>0)的值域?yàn)?IMG height=21 src='http://thumb.zyjl.cn/pic1/img/20090331/20090331160352008.gif' width=9>6,+∞,求的值;

(2)研究函數(shù)(常數(shù)>0)在定義域內(nèi)的單調(diào)性,并說明理由;

(3)對函數(shù)(常數(shù)>0)作出推廣,使它們都是你所推廣的函數(shù)的特例.研究推廣后的函數(shù)的單調(diào)性(只須寫出結(jié)論,不必證明),并求函數(shù)是正整數(shù))在區(qū)間[,2]上的最大值和最小值(可利用你的研究結(jié)論).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2013屆內(nèi)蒙古赤峰市高二下學(xué)期期末考試文科數(shù)學(xué)試卷(解析版) 題型:解答題

已知函數(shù)有如下性質(zhì):如果常數(shù)>0,那么該函數(shù)在0,上是減函數(shù),在,+∞上是增函數(shù).

(Ⅰ)如果函數(shù)>0)的值域?yàn)?img src="http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/2012091821450476845968/SYS201209182145424867451118_ST.files/image008.png">6,+∞,求的值;

(Ⅱ)研究函數(shù)(常數(shù)>0)在定義域內(nèi)的單調(diào)性,并說明理由;

(Ⅲ)對函數(shù)(常數(shù)>0)作出推廣,使它們都是你所推廣的函數(shù)的特例.研究推廣后的函數(shù)的單調(diào)性(只須寫出結(jié)論,不必證明),并求函數(shù)是正整數(shù))在區(qū)間[,2]上的最大值和最小值(可利用你的研究結(jié)論).

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2011-2012學(xué)年山東省高三數(shù)學(xué)10月單元練習(xí)(函數(shù)二) 題型:解答題

(本小題滿分14分)已知函數(shù)有如下性質(zhì):如果常數(shù)>0,那么該

 

函數(shù)在0,上是減函數(shù),在,+∞上是增函數(shù).

(1)如果函數(shù)>0)的值域?yàn)?img src="http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/2012052422081064063640/SYS201205242209514375278025_ST.files/image008.png">6,+∞,求的值;

 

(2)研究函數(shù)(常數(shù)>0)在定義域內(nèi)的單調(diào)性,并說明理由;

 

(3)對函數(shù)(常數(shù)>0)作出推廣,使它們都是你所推廣的

 

函數(shù)的特例.

(4)(理科生做)研究推廣后的函數(shù)的單調(diào)性(只須寫出結(jié)論,不必證明),并求函數(shù)是正整數(shù))在區(qū)間[,2]上的最大值和最小值(可利用你

 

的研究結(jié)論).

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

22.已知函數(shù)有如下性質(zhì):如果常數(shù)>0,那么該函數(shù)在0,上是減函數(shù),

,+∞上是增函數(shù).

(1)如果函數(shù)>0)的值域?yàn)?IMG align="absmiddle" height=21 src="http://thumb.zyjl.cn/pic1/1898/img/06/71/82/189806718210016282/15.gif" width=9 align=absMiddle v:shapes="_x0000_i1187">6,+∞,求的值;

(2)研究函數(shù)(常數(shù)>0)在定義域內(nèi)的單調(diào)性,并說明理由;

(3)對函數(shù)(常數(shù)>0)作出推廣,使它們都是你所推廣的函數(shù)的特例.研究推廣后的函數(shù)的單調(diào)性(只須寫出結(jié)論,不必證明),并求函數(shù)

是正整數(shù))在區(qū)間[,2]上的最大值和最小值(可利用你的研究結(jié)論).

查看答案和解析>>

同步練習(xí)冊答案