【題目】如圖,在三棱錐P-ABC中,已知PC⊥BC,PC⊥AC,點(diǎn)E,F(xiàn),G分別是所在棱的中點(diǎn),則下面結(jié)論中錯(cuò)誤的是 ( )
A.平面EFG∥平面PBC
B.平面EFG⊥平面ABC
C.∠BPC是直線EF與直線PC所成的角
D.∠FEG是平面PAB與平面ABC所成二面角的平面角
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】選修44:坐標(biāo)系與參數(shù)方程:在直角坐標(biāo)系xoy中,曲線的參數(shù)方程為,(為參數(shù)),以原點(diǎn)O為極點(diǎn),x軸正半軸為極軸,建立極坐標(biāo)系,曲線的極坐標(biāo)方程為.
(1)求曲線C1的普通方程與曲線C2的直角坐標(biāo)方程;
(2)設(shè)P為曲線C1上的動(dòng)點(diǎn),求點(diǎn)P到C2上點(diǎn)的距離的最小值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù)(其中)
(1)求的單調(diào)減區(qū)間;
(2)當(dāng)時(shí),恒成立,求的取值范圍;
(3)設(shè) 只有兩個(gè)零點(diǎn)(),求的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù)y=f(x)是定義域?yàn)?/span>R的偶函數(shù).當(dāng)x≥0時(shí),,若關(guān)于x的方程[f(x)]2+af(x)+b=0,a,b∈R有且僅有6個(gè)不同實(shí)數(shù)根,則實(shí)數(shù)a的取值范圍是( 。
A. B.
C. D.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】我國(guó)南宋數(shù)學(xué)家楊輝1261年所著的《詳解九章算法》一書(shū)里出現(xiàn)了如圖所示的表,即楊輝三角,這是數(shù)學(xué)史上的一個(gè)偉大成就.在“楊輝三角”中,第行的所有數(shù)字之和為,若去除所有為1的項(xiàng),依次構(gòu)成數(shù)列,則此數(shù)列的前55項(xiàng)和為( )
A. 4072B. 2026C. 4096D. 2048
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】(選修4-4:坐標(biāo)系與參數(shù)方程)
已知曲線C的極坐標(biāo)方程是ρ=2cosθ,以極點(diǎn)為平面直角坐標(biāo)系的原點(diǎn),極軸為x軸的正半軸,建立平面直角坐標(biāo)系,直線L的參數(shù)方程是(t為參數(shù)).
(1)求曲線C的直角坐標(biāo)方程和直線L的普通方程;
(2)設(shè)點(diǎn)P(m,0),若直線L與曲線C交于A,B兩點(diǎn),且|PA||PB|=1,求實(shí)數(shù)m的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖所示,在四棱錐S—ABCD中,SA⊥平面ABCD,底面ABCD為直角梯形,其中AB∥CD,∠ADC=90°,AD=AS=2,AB=1,CD=3,點(diǎn)E在棱CS上,且CE=λCS.
(1)若,證明:BE⊥CD;
(2)若,求點(diǎn)E到平面SBD的距離.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,對(duì)稱軸為直線的拋物線經(jīng)過(guò)點(diǎn)和.
(1)求拋物線解析式及頂點(diǎn)坐標(biāo);
(2)設(shè)點(diǎn)是拋物線上一動(dòng)點(diǎn),且位于第四象限,四邊形OEAF是以OA為對(duì)角線的平行四邊形,求四邊形OEAF的面積S與x之間的函數(shù)關(guān)系式,并寫(xiě)出自變量x的取值范圍;
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】為調(diào)查某社區(qū)居民的業(yè)余生活狀況,研究這一社區(qū)居民在20:00-22:00時(shí)間段的休閑方式與性別的關(guān)系,隨機(jī)調(diào)查了該社區(qū)80人,得到下面的數(shù)據(jù)表:
休閑方式 性別 | 看電視 | 看書(shū) | 合計(jì) |
男 | 10 | 50 | 60 |
女 | 10 | 10 | 20 |
合計(jì) | 20 | 60 | 80 |
(1)根據(jù)以上數(shù)據(jù),能否有的把握認(rèn)為“在20:00-22:00時(shí)間段的休閑方式與性別有關(guān)系”?
(2)將此樣本的頻率估計(jì)為總體的概率,隨機(jī)調(diào)查3名在該社區(qū)的男性,設(shè)調(diào)查的3人在這一時(shí)間段以看書(shū)為休閑方式的人數(shù)為隨機(jī)變量,求的數(shù)學(xué)期望和方差.
參考公式與數(shù)據(jù)對(duì)應(yīng),對(duì)應(yīng).
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com