14.設(shè)z=1+2i,i為虛數(shù)單位,則z+$\overline{z}$=2.

分析 直接利用復(fù)數(shù)的概念以及復(fù)數(shù)的加法求解即可.

解答 解:z=1+2i,i為虛數(shù)單位,則z+$\overline{z}$=1+2i+1-2i=2.
故答案為:2.

點(diǎn)評(píng) 本題考查復(fù)數(shù)的代數(shù)形式的混合運(yùn)算,是基礎(chǔ)題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

4.解不等式:|$\frac{x-1}{2x-3}$-1|<2.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

5.已知函數(shù)f(x)=5$\sqrt{3}$sinxcosx+5cos2x-$\frac{5}{2}$.
(1)求函數(shù)f(x)的最小正周期和圖象的對(duì)稱軸方程;
(2)當(dāng)$\frac{π}{6}$≤x≤$\frac{π}{2}$時(shí),若f(x)=2,求函數(shù)f(x-$\frac{π}{12}$)的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

2.函數(shù)f(x)=$\frac{x+a}{x+1}$在(-∞,-1),(-1,+∞)上單調(diào)遞增,則實(shí)數(shù)a的取值范圍(-∞,1).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

9.定義在R上的函數(shù)f(x)=$\left\{\begin{array}{l}{1+lo{g}_{2}(1-x),(x≤0)}\\{f(x-1)-f(x-2),(x>0)}\end{array}\right.$,則f(3)的值為(  )
A.-1B.0C.1D.2

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

19.已知f(x)=$\left\{\begin{array}{l}{{2}^{x},x≤1}\\{1+lo{g}_{2}(x+2),x>1}\end{array}\right.$,則f(log2$\frac{1}{3}$)+f(2)=$\frac{10}{3}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

6.你能根據(jù)對(duì)數(shù)的定義推導(dǎo)出下面的換底公式嗎?logab=$\frac{lo{g}_{c}b}{lo{g}_{c}a}$(a>0,且a≠1;c>0,且c≠1;b>0).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

3.已知函數(shù)f(x)=$\left\{\begin{array}{l}{3-|x|,x≤3}\\{(x-3)^{2},x>3}\end{array}\right.$,函數(shù)g(x)=m-f(3-x),其中m∈R,若函數(shù)y=f(x)-g(x)至少有4個(gè)零點(diǎn),則實(shí)數(shù)m的取值范圍是[$\frac{11}{4}$,3).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

4.在△ABC中,已知a=$\sqrt{3}$,b=3,A=30°,求B及S△ABC

查看答案和解析>>

同步練習(xí)冊(cè)答案