分別求適合下列條件的曲線的標準方程:
(1)焦點為F1(0,-1)、F2(0,1)且過點M(
3
2
,1)橢圓;
(2)求經過點A(0,4),B(4,6)且圓心在直線x-2y-2=0上的圓的方程;
(3)與雙曲線x2-
y2
2
=1有相同的漸近線,且過點(2,2)的雙曲線.
(1)∵橢圓焦點為F1(0,-1)、F2(0,1),
∴設橢圓的標準方程為:
x2
a2-1
+
y2
a2
=1

∵橢圓過點M(
3
2
,1),
9
4
a2-1
+
1
a2
=1
,
解得a2=4,或a2=
1
4
,
∴橢圓方程為:
x2
3
+
y2
4
=1

(2)設圓心坐標為(a,b),由題意知:
a2+(b-4)2
=
(a-4)2+(b-6)2
a-2b-2=0
,
解得a=4,b=1,
∴圓心為(4,1),
圓半徑r=
(4-0)2+(1-4)2
=5,
∴圓的方程為(x-4)2+(y-1)2=25.
(3)設與雙曲線x2-
y2
2
=1有相同的漸近線的雙曲線方程為:
x2-
y2
2
=λ(λ≠0)
,
把點(2,2)代入,得λ=4-
4
2
=2
,
∴雙曲線方程為
x2
2
-
y2
4
=1
練習冊系列答案
相關習題

科目:高中數(shù)學 來源:不詳 題型:填空題

已知兩個定點F1(-4,0),F(xiàn)2(4,0),且|MF1|+|MF2|=8,則點M的軌跡方程是______.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

橢圓
x2
16
+
y2
m
=1
過點(2,3),橢圓上一點P到兩焦點F1、F2的距離之差為2,
(1)求橢圓方程
(2)試判斷△PF1F2的形狀.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:單選題

若橢圓
x2
m
+
y2
3
=1
的右焦點與拋物線y2=12x的焦點重合,則m=(  )
A.3B.6C.9D.12

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

若橢圓
x2
a2
+
y2
b2
=1(a>b>0)
過點(-3,2)離心率為
3
3
,⊙O的圓心為原點,直徑為橢圓的短軸,⊙M的方程為(x-8)2+(y-6)2=4,過⊙M上任一點P作⊙的切線PA、PB切點為A、B.
(1)求橢圓的方程;
(2)若直線PA與⊙M的另一交點為Q當弦PQ最大時,求直線PA的直線方程;
(3)求
OA
OB
的最大值與最小值.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:單選題

已知△ABC的周長是16,A(-3,0),B(3,0),則動點C的軌跡方程是( 。
A.
x2
25
+
y2
16
=1
B.
x2
25
+
y2
16
=1(y≠0)
C.
x2
16
+
y2
25
=1
D.
x2
16
+
y2
25
=1(y≠0)

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:單選題

P(2cosα,
3
sinα)
(α∈R)與橢圓C:
x2
4
+
y2
3
=1
的位置關系是( 。
A.點P在橢圓C上
B.點P與橢圓C的位置關系不能確定,與α的取值有關
C.點P在橢圓C內
D.點P在橢圓C外

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

已知橢圓C:
x2
a2
+
y2
b2
=1(a>b>0)的左右焦點分別為F1,F(xiàn)2,若△AF1F2為正三角形且周長為6;
(1)求橢圓C的標準方程;
(2)若橢圓C上存在A,B兩點關于直線y=x+m對稱,求實數(shù)m的取值范圍;
(3)若直線l:y=kx+n與橢圓C交于A,B兩點(A,B不是左右頂點),且以AB為直徑的圓過橢圓C的右頂點,求證直線l過定點,并求出定點坐標.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:單選題

橢圓
x2
36
+
y2
20
=1的離心率e是( 。
A.
5
3
B.
3
2
C.
3
5
5
D.
2
3

查看答案和解析>>

同步練習冊答案