已知曲線時(shí),
直線l恒在曲線C的上方,則實(shí)數(shù)k的取值范圍是           (   )
A.   B.   C.       D.
B
考點(diǎn):
分析:將已知條件當(dāng)x∈[-3,3]時(shí),直線l 恒在曲線C的上方,等價(jià)于x在(-3,3)內(nèi)(-x-2k+1)- x-x-4x+1>0恒成立,構(gòu)造函數(shù),通過(guò)求導(dǎo)數(shù),判斷出函數(shù)的單調(diào)性,進(jìn)一步求出函數(shù)的最值.
解答:解:命題等價(jià)于x在(-3,3)內(nèi),
(-x-2k+1)-(- x-x-4x+1>0恒成立
即k<-x+x+x,
設(shè)y=-x+x+x,
=-x+x+=(3-x)(1+x)
所以函數(shù)y=-x+x+x,
在[-3,-1)內(nèi)y遞減,(-1,3]內(nèi)遞增
所以x=-1,y取最小值-
所以
故選B.
點(diǎn)評(píng):求函數(shù)在閉區(qū)間上的最值,一般的方法是求出函數(shù)的導(dǎo)函數(shù),令導(dǎo)函數(shù)為0,判斷出根左右兩邊的導(dǎo)函數(shù)值,求出函數(shù)的極值及區(qū)間兩個(gè)端點(diǎn)處的函數(shù)值,選出最值.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:單選題

下列區(qū)間中,函數(shù)在其上為增函數(shù)的是( ▲ ).
A.B.C.D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

(14分)已知函數(shù),其中.
(1)求的解析式;

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

已知函數(shù)=ax2+(b-8)x-a-ab , 當(dāng)x(-∞,-3)(2,+∞)時(shí), <0,當(dāng)x(-3,2)時(shí)>0 .
(1)求在[0,1]內(nèi)的值域.
(2)若ax2+bx+c≤0的解集為R,求實(shí)數(shù)c的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

(本小題滿(mǎn)分12分)
已知函數(shù),若函數(shù)在其定義域內(nèi)為單調(diào)函數(shù),求的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

(本小題滿(mǎn)分14分)
已知滿(mǎn)足不等式,求函數(shù)的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:填空題

函數(shù)的單調(diào)增區(qū)間為_(kāi)____________,單調(diào)減區(qū)間為_(kāi)____________。

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:填空題

某工廠生產(chǎn)某種產(chǎn)品固定成本為2000萬(wàn)元,并且每生產(chǎn)一單位產(chǎn)品,成本增加10萬(wàn)元,又知總收入k是單位產(chǎn)品數(shù)Q的函數(shù),k(Q)=40Q-Q2,則總利潤(rùn)L(Q)的最大值是________

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:填空題

下圖是函數(shù)的部分圖像,則函數(shù)的零點(diǎn)所在的區(qū)間是
A.B.C.D.

查看答案和解析>>

同步練習(xí)冊(cè)答案