4.求到點(diǎn)A(-5,0)和B(5,0)的距離的平方差為36的動(dòng)點(diǎn)的軌跡方程.

分析 設(shè)動(dòng)點(diǎn)P(x,y),利用已知條件列出方程,求出點(diǎn)的軌跡方程.

解答 解:設(shè)動(dòng)點(diǎn)P(x,y),P到點(diǎn)A(-5,0)和B(5,0)的距離的平方差為36,
則PA2=(x+5)2+(y-0)2,
PB2=(x-5)2+(y-0)2,
所以|PA2-PB2|=36,
|20x|=36,
得:x=$±\frac{9}{5}$
所求解方程為:x=$±\frac{9}{5}$.

點(diǎn)評(píng) 本題考查點(diǎn)的軌跡方程的求法,是中檔題,解題時(shí)要認(rèn)真審題,注意兩點(diǎn)間距離公式的合理運(yùn)用.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

14.已知|$\overrightarrow a$|=$\sqrt{3}$,|$\overrightarrow b$|=2.
(1)若$\overrightarrow a$與$\overrightarrow b$的夾角為150°,求|$\overrightarrow a$+2$\overrightarrow b$|;
(2)若$\overrightarrow a$-$\overrightarrow b$與$\overrightarrow a$垂直,求$\overrightarrow a$與$\overrightarrow b$的夾角大。

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

15.已知函數(shù)f(x)=$\left\{\begin{array}{l}{{2}^{-x}-1(x≤0)}\\{f(x-1)(x>0)}\end{array}\right.$,若函數(shù)y=f(x)-x-$\frac{a}{2}$恰有兩個(gè)不同的零點(diǎn),則實(shí)數(shù)a的取值范圍是(  )
A.(0,2)B.(-∞,2)C.(-∞,2]D.[0,+∞)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

12.已知f(x)、g(x)、h(x)均為一次函數(shù).若對(duì)實(shí)數(shù)x滿足:
|f(x)|-|g(x)|+h(x)=$\left\{\begin{array}{l}{-2,x<-1}\\{7x+5,-1≤x<0}\\{-4x+5,x≥0}\end{array}\right.$,h(x)的解析式為.
A.2x-$\frac{3}{2}$B.-2x-$\frac{3}{2}$C.2x+$\frac{3}{2}$D.-2x+$\frac{3}{2}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

19.函數(shù)y=sinx與y=cos(2x+θ),它們的圖象有一個(gè)交點(diǎn)的橫坐標(biāo)為$\frac{π}{6}$,若θ>0,則θ的最小值是$\frac{4π}{3}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

9.已知0<x<1,0<a<1,試比較|loga(1-x)|和|loga(1+x)|的大。

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

16.如圖,在棱長(zhǎng)為2的正方體ABCD-A1B1C1D1中,A1B1的中點(diǎn)是P,過(guò)點(diǎn)A1作截面PBC1平行的截面,則該截面的面積為( 。
A.2$\sqrt{2}$B.2$\sqrt{3}$C.2$\sqrt{6}$D.4

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

13.函數(shù)y=$\sqrt{-sinx}$+$\sqrt{tanx}$的定義域是{x|$2kπ+π≤x<2kπ+\frac{3π}{2}$,k∈Z}.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

14.函數(shù)f(x)=log2(x2-4x+5)的零點(diǎn)為2.

查看答案和解析>>

同步練習(xí)冊(cè)答案