精英家教網(wǎng)如圖,已知橢圓
x2
a2
+
y2
b2
=1(a>b>0)
過點(diǎn).(1,
2
2
)
,離心率為
2
2
,左、右焦點(diǎn)分別為F1、F2.點(diǎn)p為直線l:x+y=2上且不在x軸上的任意一點(diǎn),直線PF1和PF2與橢圓的交點(diǎn)分別為A、B和C、D,O為坐標(biāo)原點(diǎn).
(1)求橢圓的標(biāo)準(zhǔn)方程;
(2)設(shè)直線PF1、PF2的斜線分別為k1、k2.①證明:
1
k1
-
3
k2
=2
;②問直線l上是否存在點(diǎn)P,使得直線OA、OB、OC、OD的斜率kOA、kOB、kOC、kOD滿足kOA+kOB+kOC+kOD=0?若存在,求出所有滿足條件的點(diǎn)P的坐標(biāo);若不存在,說明理由.
分析:(1)利用橢圓過已知點(diǎn)和離心率,聯(lián)立方程求得a和b,則橢圓的方程可得.
(2)①把直線PF1、PF2的方程聯(lián)立求得交點(diǎn)的坐標(biāo)的表達(dá)式,代入直線x+y=2上,整理求得
1
k1
-
3
k2
=2
,原式得證.
②設(shè)出A,B,C,D的坐標(biāo),聯(lián)立直線PF1和橢圓的方程根據(jù)韋達(dá)定理表示出xA+xB和xAxB,進(jìn)而可求得直線OA,OB斜率的和與CO,OD斜率的和,由kOA+k)B+kOC+kOD=0推斷出k1+k2=0或k1k2=1,分別討論求得p.
解答:解:(1)∵橢圓過點(diǎn)(1,
2
2
)
,e=
2
2

a2=2b2,a=
2
,b=c=1
,
故所求橢圓方程為
x2
2
+y2=1
;
(2)①由于F1(-1,0)、F2(1,0),PF1,PF2的斜率分別是k1,k2,且點(diǎn)P不在x軸上,
所以k1≠k2,k1≠0,k2≠0.
又直線PF1、PF2的方程分別為y=k1(x+1),y=k2(x-1),
聯(lián)立方程解得
x=
k1+k2
k2-k1
y=
2k1k2
k2-k1

所以P(
k1+k2
k2-k1
,
2k1k2
k2-k1
)
,由于點(diǎn)P在直線x+y=2上,
所以
k1+k2
k2-k1
+
2k1k2
k2-k1
=2,即2k1k2+3k1-k2=0
,
1
k1
-
3
k2
=2

②設(shè)A(xA,yA),B(xB,yB),C(xC,yC),D(xD,yD),聯(lián)立直線PF1和橢圓的方程得
y=k1(x+1)
x2+2y2=2
,
化簡(jiǎn)得(2k12+1)x2+4k12x+2k12-2=0,
因此xA+xB=-
4
k
2
1
2
k
2
1
+1
xAxB=
2
k
2
1
-2
2
k
2
1
+1
,
所以kOA+kOB=
yA
xA
+
yB
xB
=
k1(xA+1)
xA
+
k1(xB+1)
xB
=2k1+k1
xA+xB
xAxB
=k1(2-
4
k
2
1
2
k
2
1
-2
)=-
2k1
k
2
1
-1

同理可得:kOC+kOD=-
2k2
k
2
2
-1
,
故由kOA+k)B+kOC+kOD=0得k1+k2=0或k1k2=1,
當(dāng)k1+k2=0時(shí),由(1)的結(jié)論可得k2=-2,解得P點(diǎn)的坐標(biāo)為(0,2)
當(dāng)k1k2=1時(shí),由(1)的結(jié)論可得k2=3或k2=-1(舍去),
此時(shí)直線CD的方程為y=3(x-1)與x+y=2聯(lián)立得x=\frac{5}{4},y=
3
4
,
所以P(
5
4
,
3
4
)
,
綜上所述,滿足條件的點(diǎn)P的坐標(biāo)分別為P(
5
4
,
3
4
)
,P(0,2).
點(diǎn)評(píng):本題主要考查了直線與圓錐曲線的關(guān)系的綜合問題,橢圓的簡(jiǎn)單性質(zhì).考查了學(xué)生綜合推理能力,基本計(jì)算能力.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

如圖,已知橢圓
x2
a2
+
y2
b2
=1(a>b>0)
過點(diǎn)C(
3
2
,
3
2
)
且離心率為
6
3
,A、B是長(zhǎng)軸的左右兩頂點(diǎn),P為橢圓上意一點(diǎn)(除A,B外),PD⊥x軸于D,若
PQ
QD
,λ∈(-1,0)

(1)試求橢圓的標(biāo)準(zhǔn)方程;
(2)P在C處時(shí),若∠QAB=2∠PAB,試求過Q、A、D三點(diǎn)的圓的方程;
(3)若直線QB與AP交于點(diǎn)H,問是否存在λ,使得線段OH的長(zhǎng)為定值,若存在,求出λ的值;若不存在,說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2013•汕頭一模)如圖.已知橢圓
x2
a2
+
y2
b2
=1(a>b>0)
的長(zhǎng)軸為AB,過點(diǎn)B的直線l與x軸垂直,橢圓的離心率e=
3
2
,F(xiàn)1為橢圓的左焦點(diǎn)且
AF1
F1B
=1.
(I)求橢圓的標(biāo)準(zhǔn)方程;
(II)設(shè)P是橢圓上異于A、B的任意一點(diǎn),PH⊥x軸,H為垂足,延長(zhǎng)HP到點(diǎn)Q使得HP=PQ.連接AQ并延長(zhǎng)交直線l于點(diǎn)M,N為MB的中點(diǎn),判定直線QN與以AB為直徑的圓O的位置關(guān)系.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2012•安徽模擬)如圖,已知橢圓
x2
a2
+
y2
b2
=1
(a>b>0)的離心率為
3
2
,F(xiàn)1,F(xiàn)2分別是橢圓的左、右焦點(diǎn),B為橢圓的上頂點(diǎn)且△BF1F2的周長(zhǎng)為4+2
3

(1)求橢圓的方程;
(2)是否存在這樣的直線使得直線l與橢圓交于M,N兩點(diǎn),且橢圓右焦點(diǎn)F2恰為△BMN的垂心?若存在,求出直線l的方程;若不存在,請(qǐng)說明由..

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2011•崇明縣二模)如圖,已知橢圓
x2
a2
+
y2
b2
=1
(a>b>0),M為橢圓上的一個(gè)動(dòng)點(diǎn),F(xiàn)1、F2分別為橢圓的左、右焦點(diǎn),A、B分別為橢圓的一個(gè)長(zhǎng)軸端點(diǎn)與短軸的端點(diǎn).當(dāng)MF2⊥F1F2時(shí),原點(diǎn)O到直線MF1的距離為
1
3
|OF1|.
(1)求a,b滿足的關(guān)系式;
(2)當(dāng)點(diǎn)M在橢圓上變化時(shí),求證:∠F1MF2的最大值為
π
2

(3)設(shè)圓x2+y2=r2(0<r<b),G是圓上任意一點(diǎn),過G作圓的切線交橢圓于Q1,Q2兩點(diǎn),當(dāng)OQ1⊥OQ2時(shí),求r的值.(用b表示)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

精英家教網(wǎng)如圖,已知橢圓
x2
a2
+
y2
b2
=1(a>b>0)
過點(diǎn)(1,
2
2
)
,離心率為
2
2
,左、右焦點(diǎn)分別為F1、F2.點(diǎn)P為直線l:x+y=2上且不在x軸上的任意一點(diǎn),直線PF1和PF2與橢圓的交點(diǎn)分別為A、B和C、D,O為坐標(biāo)原點(diǎn).設(shè)直線PF1、PF2的斜率分別為k1、k2
(Ⅰ)證明:
1
k1
-
3
k2
=2
;
(Ⅱ)問直線l上是否存在點(diǎn)P,使得直線OA、OB、OC、OD的斜率kOA、kOB、kOC、kOD滿足kOA+kOB+kOC+kOD=0?若存在,求出所有滿足條件的點(diǎn)P的坐標(biāo);若不存在,說明理由.

查看答案和解析>>

同步練習(xí)冊(cè)答案