在空間四邊形ABCD中,點E、F、G、H分別在AB、BC、CD、DA上,若直線EH與FG相交于點P,則點P與直線BD的關(guān)系是
P∈BD
P∈BD
分析:根據(jù)題意,可得直線EH、FG分別是平面ABD、平面BCD內(nèi)的直線,因此EH、FG的交點必定在平面ABD和平面BCD的交線上.而平面ABD交平面BCD于BD,由此即可得到點P在直線BD上,可得本題答案.
解答:解:∵點E、H分別在AB、AD上,而AB、AD是平面ABD內(nèi)的直線
∴E∈平面ABD,H∈,可得直線EH?平面ABD
∵點F、G分別在BC、CD上,而BC、CD是平面BCD內(nèi)的直線
∴F∈平面BCD,H∈平面BCD,可得直線FG?平面BCD
因此,直線EH與FG的公共點在平面ABD與平面BCD的交線上
∵平面ABD∩平面BCD=BD,
∴點P∈直線BD,直線EH與FG相交于點P,
故答案為:P∈BD
點評:本題給出空間四邊形,判斷直線EH、FG的交點與已知直線BD的位置關(guān)系,著重考查了平面的基本性質(zhì)和空間直線的位置關(guān)系判斷等知識,屬于基礎(chǔ)題.
練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:

8、在空間四邊形ABCD的各邊AB,BC,CD,DA上依次取點E,F(xiàn),G,H,若EH、FG所在直線相交于點P,則( 。

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

在空間四邊形ABCD的邊AB,BC,CD,DA上分別取E,F(xiàn),G,H使
AE
EB
=
AH
HD
=1,
CF
FB
=
CG
GD
=
1
2
,則(  )

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

在空間四邊形ABCD中,連接AC、BD,若△BCD是正三角形,且E為其中心,則
AB
+
1
2
BC
-
3
2
DE
-
AD
化簡后的結(jié)果為(  )
A、
AB
B、2
BD
C、
0
D、2
DE

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

(2011•順義區(qū)一模)如圖,已知在空間四邊形ABCD中,AB=AC=DB=DC,E為BC的中點.
(Ⅰ)求證:平面ADE⊥平面ABC;
(Ⅱ)若AB=5,BC=6,AD=4,求幾何體ABCD的體積;
(Ⅲ)在(Ⅱ)的條件下,若G為△ABD的重心,試問在線段BC上是否存在點F,使GF∥平面ADE?若存在,請指出點F在BC上的位置,若不存在,請說明理由.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

在空間四邊形ABCD中,E,F(xiàn),G,H分別是AB,BC,CD,DA的中點.若AC=BD=a,若四邊形EFGH的面積為
3
8
a2
,則異面直線AC與BD所成的角為( 。
A、30°B、60°
C、120°D、60°或120°

查看答案和解析>>

同步練習冊答案