分析 求函數(shù)的導(dǎo)數(shù),利用g′(x)≥0即可求出a的取值范圍.
解答 解:函數(shù)的導(dǎo)數(shù)為g′(x)=3ax2+2ax+1,
若函數(shù)數(shù)g(x)=ax3+ax2+1在R上單調(diào)遞增,
則等價(jià)為g′(x)≥0恒成立,
若a=0,則g′(x)=1≥0,滿(mǎn)足條件,
若a≠0,要使g′(x)≥0恒成立,
則$\left\{\begin{array}{l}{a>0}\\{△=4{a}^{2}-12a≤0}\end{array}\right.$,
即$\left\{\begin{array}{l}{a>0}\\{0≤a≤3}\end{array}\right.$,
解得0<a≤3,
綜上0≤a≤3,
故答案為:[0,3].
點(diǎn)評(píng) 本題主要考查函數(shù)單調(diào)區(qū)間的求解,求函數(shù)的導(dǎo)數(shù),利用導(dǎo)數(shù)是解決本題的關(guān)鍵.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
x | 1 | 2 | 3 | 4 |
y | 1 | 3 | 5 | 6 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | $\frac{1}{2}$ | B. | 1 | C. | $\frac{3}{2}$ | D. | 2 |
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話(huà):027-86699610 舉報(bào)郵箱:58377363@163.com