從1,2,3,4,5中任取2個不同的數(shù),事件A=“取到的2個數(shù)之和為偶數(shù)”,事件B=“取到的2個數(shù)均為偶數(shù)”,則P(B|A)=________.
P(A)=,
P(AB)=,
P(B|A)=.
練習冊系列答案
相關習題

科目:高中數(shù)學 來源:不詳 題型:解答題

一個盒子裝有六張卡片,上面分別寫著如下六個定義域為的函數(shù):,,,,.
(1)現(xiàn)從盒子中任取兩張卡片,將卡片上的函數(shù)相加得一個新函數(shù),求所得函數(shù)是奇函數(shù)的概率;
(2)現(xiàn)從盒子中進行逐一抽取卡片,且每次取出后均不放回,若取到一張記有偶函數(shù)的卡片則停止抽取,否則繼續(xù)進行,求抽取次數(shù)的分布列和數(shù)學期望.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

若點(p,q),在|p|≤3,|q|≤3中按均勻分布出現(xiàn).試求方程x2+2px-q2+1=0有兩個實數(shù)根的概率.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

山姆的意大利餡餅屋中設有一個投鏢靶該靶為正方形板.邊長為18厘米,掛于前門附近的墻上,顧客花兩角伍分的硬幣便可投一鏢并可有機會贏得一種意大利餡餅中的一個,投鏢靶中畫有三個同心圓,圓心在靶的中心,當投鏢擊中半徑為1厘米的最內(nèi)層圓域時.可得到一個大餡餅;當擊中半徑為1厘米到2厘米之間的環(huán)域時,可得到一個中餡餅;如果擊中半徑為2厘米到3厘米之間的環(huán)域時,可得到一個小餡餅,如果擊中靶上的其他部分,則得不到諂餅,我們假設每一個顧客都能投鏢中靶,并假設每個圓的周邊線沒有寬度,即每個投鏢不會擊中線上,試求一顧客將嬴得:
(1)一張大餡餅的概率;
(2)一張中餡餅的概率;
(3)一張小餡餅的概率;
(4)沒得到餡餅的概率.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:填空題

拋擲兩顆均勻的骰子,已知它們的點數(shù)不同,則至少有一顆是6點的概率為________.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

某部門對當?shù)爻青l(xiāng)居民進行了主題為“你幸福嗎?”的幸福指數(shù)問卷調査,并在已被問卷調查的居民中隨機抽選部分居民參加“幸福職業(yè)”或“幸福愿景”的座談會,被邀請的居民只能選擇其中一場座談會參加.已知A小區(qū)有1人,B小區(qū)有3人收到邀請并將參加一場座談會,若A小區(qū)已經(jīng)收到邀請的人選擇參加“幸福愿景”座談會的概率是, B小區(qū)已經(jīng)收到邀請的人選擇參加“幸福愿景”座談會的概率是
(Ⅰ)求A、B兩個小區(qū)已收到邀請的人選擇“幸福愿景”座談會的人數(shù)相等的概率;
(Ⅱ)在參加“幸福愿景”座談會的人中,記A、B兩個小區(qū)參會人數(shù)的和為,試求的分布列和數(shù)學期望.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:單選題

將號碼分別為1、2、…、9的九個小球放入一個袋中, 這些小球僅號碼不同,其余完全相同.甲從袋中摸出一個球,其號碼為a放回后,乙從此袋中再摸出一個球,其號碼為b.則使不等式a -2b +10>0成立的事件發(fā)生的概率等于(  )
A.B.C.D.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:單選題

已知箱中共有6個球,其中紅球、黃球、藍球各2個.每次從該箱中取1個球 (有放回,每球取到的機會均等),共取三次.設事件A:“第一次取到的球和第二次取到的球顏色相同”,事件B:“三次取到的球顏色都相同”,則(   )
A.B.C.D.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:單選題

某氣象臺統(tǒng)計,該地區(qū)下雨的概率為,刮風的概率是,既刮風又下雨的概率為,設A為下雨,B為刮風,則=                     (    )
(A)      (B)       (C)       (D)

查看答案和解析>>

同步練習冊答案