11.一袋中裝有3個(gè)白球和2個(gè)黑球,無放回地從袋中任取3個(gè)球,求取到的黑球數(shù)目的概率分布.

分析 隨機(jī)變量ξ的所有可能取值為0,1,2,分別求出相應(yīng)的概率,由此能求出取到的黑球數(shù)目的概率分布.

解答 解:隨機(jī)變量ξ的所有可能取值為0,1,2,
P(ξ=0)=$\frac{C_2^0C_3^3}{C_5^3}=\frac{1}{10}$,
P(ξ=1)=$\frac{C_2^1C_3^2}{C_5^3}=\frac{3}{5}$,
P(ξ=2)=$\frac{C_2^2C_3^1}{C_5^3}=\frac{3}{10}$.
所以ξ的概率分布為:

ξ012
P$\frac{1}{10}$$\frac{3}{5}$$\frac{3}{10}$

點(diǎn)評(píng) 本題考查離散型隨機(jī)變量的分布列的求法,是中檔題,解題時(shí)要認(rèn)真審題,注意排列組合知識(shí)的合理運(yùn)用.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:填空題

1.已知正方形ABCD的邊長為2,直線MN過正方形的中心O交線段AD,BC于M,N兩點(diǎn),若點(diǎn)P滿足$\overrightarrow{OP}$=λ$\overrightarrow{OA}$+(1-λ)$\overrightarrow{OB}$(λ∈R),則$\overrightarrow{PM}$•$\overrightarrow{PN}$的最小值為-1.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

2.設(shè)集合A={x|y=$\sqrt{2-x}$},B={y|y=ln(3-x)},則A∩B( 。
A.{x|x≤2}B.{x|x<3}C.{x|2<x≤3}D.{x|2≤x<3}

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

19.已知函數(shù)f(x)=lgkx,g(x)=lg(x+1),h(x)=$\frac{x}{{x}^{2}+1}$.
(1)當(dāng)k=1時(shí),求函數(shù)y=f(x)+g(x)的單調(diào)區(qū)間;
(2)若方程f(x)=2g(x)僅有一個(gè)實(shí)根,求實(shí)數(shù)k的取值集合;
(3)設(shè)p(x)=h(x)+$\frac{mx}{1+x}$在區(qū)間(-1,1)上有且僅有兩個(gè)不同的零點(diǎn),求實(shí)數(shù)m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

6.下列每組表示同一集合的是( 。
A.M={2,3},S={(2,3)}
B.M={π},S={3.14}
C.M={0},S=∅
D.M={1,2,3,…,n-1,n},S={前n個(gè)非零自然數(shù)}

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

16.現(xiàn)有一組樣本數(shù)據(jù):1,2,2,2,3,3,4,5.則它的中位數(shù)和眾數(shù)分別為( 。
A.$\frac{5}{2}$,2B.2,2C.3,2D.2,3

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

3.函數(shù)y=f(x)+2x是偶函數(shù),g(x)=f(x)+x2,g(1)=3,則g(-1)=-1.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

20.已知函數(shù)f(x)=lnx+$\frac{1-x}{ax}$,其中a為大于零的常數(shù).
(1)若f(x)在區(qū)間[1,+∞)內(nèi)單調(diào)遞增,求a的取值范圍;
(2)求f(x)在區(qū)間[1,2]上的最大值;
(3)求證:對(duì)于任意的n∈N*,且n>1時(shí),都有n-lnn<1+$\frac{1}{2}$+$\frac{2}{3}$+$\frac{3}{4}$+…+$\frac{n-1}{n}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

1.如圖,一環(huán)形花壇成A,B,C,D四塊,現(xiàn)有4種不同的花供選擇,要求在每塊地里種一種花,且相鄰的兩塊種不同的花,則不同的種法總數(shù)為( 。
A.48B.60C.84D.96

查看答案和解析>>

同步練習(xí)冊(cè)答案