分析 (1)求出函數(shù)的表達(dá)式,根據(jù)x的范圍以及對(duì)數(shù)函數(shù)的性質(zhì)求出函數(shù)的單調(diào)區(qū)間即可;
(2)將方程f(x)=2g(x)等價(jià)轉(zhuǎn)化為普通的一元二次不等式,然后對(duì)一元二次不等式的解進(jìn)行研究,得到本題的答案;
(3)函數(shù)p(x)=h(x)+$\frac{mx}{1+x}$在區(qū)間(-1,1)上有且僅有兩個(gè)不同的零點(diǎn)等價(jià)于方程mx2+x+m+1=0(*)在區(qū)間(-1,1)上有且僅有一個(gè)非零的實(shí)根.分類(lèi)討論,即可求實(shí)數(shù)m的取值范圍.
解答 解:(1)當(dāng)k=1時(shí),y=f(x)+g(x)=lg x+lg (x+1)=lg x(x+1)(其中x>0)
∴y=f(x)+g(x)的單調(diào)遞增區(qū)間為(0,+∞),不存在單調(diào)遞減區(qū)間.
(2)由f(x)=2g(x),即lgkx=2lg (x+1),
該方程可化為不等式組$\left\{\begin{array}{l}{kx>0}\\{x+1>0}\\{kx{=(x+1)}^{2}}\end{array}\right.$,
①若k>0時(shí),則x>0,原問(wèn)題即為:方程kx=(x+1)2在(0,+∞)上有且僅有一個(gè)根,
即x2+(2-k)x+1=0在(0,+∞)上有且僅有一個(gè)根,
由x1•x2=1>0知:△=0.
解得k=4;
②若k<0時(shí),則-1<x<0,原問(wèn)題即為:方程kx=(x+1)2在(-1,0)上有且僅有一個(gè)根,
即x2+(2-k)x+1=0在(-1,0)上有且僅有一個(gè)根,
記h(x)=x2+(2-k)x+1,
由f(0)=1>0知:f(-1)<0,
解得k<0.
綜上可得k<0或k=4.
(3)令p(x)=h(x)+$\frac{mx}{1+x}$=0,即$\frac{x}{{x}^{2}+1}$+$\frac{mx}{1+x}$=0,
化簡(jiǎn)得x(mx2+x+m+1)=0,所以x=0或mx2+x+m+1=0,
若0是方程mx2+x+m+1=0的根,則m=-1,
此時(shí)方程為-x2+x=0的另一根為1,不滿(mǎn)足g(x)在(-1,1)上有兩個(gè)不同的零點(diǎn),
所以函數(shù)p(x)=h(x)+$\frac{mx}{1+x}$在區(qū)間(-1,1)上有且僅有兩個(gè)不同的零點(diǎn),
等價(jià)于方程mx2+x+m+1=0(*)在區(qū)間(-1,1)上有且僅有一個(gè)非零的實(shí)根,
(i)當(dāng)m=0時(shí),得方程(*)的根為x=-1,不符合題意,
(ii)當(dāng)m≠0時(shí),則
①當(dāng)△=12-4m(m+1)=0時(shí),得m=$\frac{-1±\sqrt{2}}{2}$,若m=$\frac{-1-\sqrt{2}}{2}$,
則方程(*)的根為x=-$\frac{1}{2m}$=$\sqrt{2}$-1∈(-1,1),符合題意,
若m=$\frac{-1+\sqrt{2}}{2}$,則方程(*)的根為x=-$\frac{1}{2m}$=-$\sqrt{2}$-1∉(-1,1),
不符合題意.所以m=$\frac{-1-\sqrt{2}}{2}$,
②當(dāng)△>0時(shí),m<$\frac{-1-\sqrt{2}}{2}$或m>$\frac{-1+\sqrt{2}}{2}$,
令ϕ(x)=mx2+x+m+1,由ϕ(-1)ϕ(1)<0且ϕ(0)≠0,得-1<m<0,
綜上所述,所求實(shí)數(shù)m的取值范圍是(-1,0)∪{$\frac{-1-\sqrt{2}}{2}$}.
點(diǎn)評(píng) 本題考查的是復(fù)合函數(shù)單調(diào)性、函數(shù)的定義域、一元二次函數(shù)的圖象和性質(zhì),還考查了分類(lèi)討論的數(shù)學(xué)思想.本題有一定的綜合性,對(duì)學(xué)生能力要求較高.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | (-∞,1) | B. | (-1,1) | C. | (-1,3) | D. | (1,3) |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話(huà):027-86699610 舉報(bào)郵箱:58377363@163.com