分析 (Ⅰ)根據(jù)題意得出,b2=ac,利用余弦定理,基本不等式求解即可,
(Ⅱ)根據(jù)題意得出,b2=$\frac{{a}^{2}+{c}^{2}}{2}$,利用余弦定理,基本不等式求解即可,
解答 解(Ⅰ)由已知得b2=ac,
由余弦定理$cosB=\frac{{{a^2}+{c^2}-{b^2}}}{2ac}=\frac{{{a^2}+{c^2}-ac}}{2ac}=\frac{1}{2}(\frac{a}{c}+\frac{c}{a})-\frac{1}{2}≥\frac{1}{2}×2-\frac{1}{2}=\frac{1}{2}$,
當(dāng)a=c時(shí),cosB取得最小值,即角B取得最大值$\frac{π}{3}$;
(Ⅱ)由已知得${b^2}=\frac{{{a^2}+{c^2}}}{2}$,
由余弦定理$cosB=\frac{{{a^2}+{c^2}-{b^2}}}{2ac}=\frac{{{a^2}+{c^2}}}{4ac}=\frac{1}{4}(\frac{a}{c}+\frac{c}{a})≥\frac{1}{4}×2=\frac{1}{2}$,
當(dāng)a=c時(shí),cosB取得最小值,即角B取得最大值$\frac{π}{3}$.
點(diǎn)評 本題考查解斜三角形,運(yùn)用余弦定理,基本不等式求解,屬于中檔題.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 1 | B. | 0 | C. | -i | D. | i |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 8 | B. | 9 | C. | 10 | D. | 11 |
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com