12.設數(shù)列{an}的前n項和為Sn,a4=7且4Sn=n(an+an+1),則a5等于( 。
A.8B.9C.10D.11

分析 利用已知條件逐步求解即可.

解答 解:4Sn=n(an+an+1),可得4S2=2(a2+a3),4S1=a1+a2,a2=3a1,a3=5a1,從而36a1=3(5a1+7),a1=1,
a2=3,a3=5,a4=7,4S4=4(a4+a5),解得a5=9.
故選:B.

點評 本題考查數(shù)列的遞推關系式的應用,考查計算能力.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:解答題

2.已知△ABC三內角A,B,C所對邊分別為a,b,c.
(Ⅰ)若a,b,c成等比數(shù)列,求角B的最大值;
(Ⅱ)若a2,b2,c2成等差數(shù)列,求角B的最大值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

3.直線$\sqrt{2}$ax+by=1與圓x2+y2=1相交于A、B兩點(其中a、b是正實數(shù)),且△AOB是直角三角形(O是坐標原點),則$\frac{1}{ab}$的最小值為( 。
A.$\sqrt{2}$B.$\sqrt{2}$+1C.2D.$\sqrt{2}$-1

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

20.若定義在R上的函數(shù)f(x)滿足:(Ⅰ)f(x1+x2)=f(x1)•f(x2),(Ⅱ)?x1<x2,f(x1)>f(x2),則滿足以上條件的一個函數(shù)解析式為y=($\frac{1}{3}$)x

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

7.直線m:ax-y+a+3=0與直線n:2x-y=0平行,則直線m與n間的距離為$\sqrt{5}$.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

17.已知函數(shù)φ(x)=lnx-ax(a∈R).
(1)討論φ(x)的單調性;
(2)設f(x)=φ(x)-$\frac{1}{2}$x3,當x>0時,f(x)<0恒成立,求a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

4.如圖,四棱錐S-ABCD中,M是SB的中點,AB∥CD,BC⊥CD,SD⊥面SAB,且AB=BC=2CD=2SD.
(Ⅰ)證明:CD⊥SD;
(Ⅱ)證明:CM∥面SAD.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

1.$\frac{3-2i}{1+3i}$=( 。
A.-$\frac{3}{10}$-$\frac{11}{10}$iB.-$\frac{3}{10}$+$\frac{11}{10}$iC.$\frac{3}{10}$+$\frac{11}{10}$iD.$\frac{3}{10}$-$\frac{11}{10}$i

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

2.如圖,矩形ABCD的邊AB=8,BC=4,以CD為直徑在矩形的外部作一半圓,圓心為O,過CD上一點N作AB的垂線交半圓弧于P,交AB于Q,M是曲線PDA上一動點.
(1)設∠POC=30°,若PM=QM,求△PMQ的面積;
(2)求△PMQ面積的最大值.

查看答案和解析>>

同步練習冊答案