設(shè)全集為R,集合A={x|x<4或x≥7},B={x|-2<x<9}.
(1)求A∪B,(∁RA)∩B;
(2)已知C={x|a+1<x<2a},若B∩C=C,求實(shí)數(shù)a的取值范圍.
考點(diǎn):交、并、補(bǔ)集的混合運(yùn)算
專題:集合
分析:(1)先求集合A,B并集,然后求∁RA,再求(∁RA)∩B,(2)由B∩C=C,則C⊆B,然后分C=∅和C≠∅進(jìn)行討論.
解答: 解:(1)∵A={x|x<4或x≥7},B={x|-2<x<9},
∴A∪B=R,
又∵全集為R,
∴∁RA={x|4≤x<7},
∴(∁RA)∩B={x|4≤x<7}∩{x|-2<x<9},
={x|4≤x<7},
(2)由B∩C=C,則C⊆B,
又∵C={x|a+1<x<2a},
B={x|-2<x<9},
∴當(dāng)C=∅時(shí),a+1≥2a,解得a≤1,
當(dāng)C≠∅時(shí),有
a>1
a+1≥-2
2a≤9
,解之得1<a≤
9
2

綜上,a
9
2

即實(shí)數(shù)a的取值范圍是(-∞,
9
2
].
點(diǎn)評(píng):本題考查集合的運(yùn)算,屬于基礎(chǔ)題目,較簡(jiǎn)單,容易忽略C為∅的情況.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

已知集合A={x|2x≥x2},B={-2,0,2},則A∩B=
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(10分)已知函數(shù)f(x)=ax2+bx+c(a>0,b∈R,c∈R),若函數(shù)f(x)在x=-1時(shí)取到最小值0,且f(0)=1,g(x)=
f(x)(x>0)
-f(x)(x<0)

(1)求g(2)+g(-2)的值;
(2)求f(x)在區(qū)間[t,t+2](t∈R)上的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知集合A={x|3≤x<7},B={x|2<x<10}.
(1)求A∪B,(∁RA)∩B;
(2)已知C={x|x<a},若A∩C=∅,求a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知圓C1是經(jīng)過點(diǎn)A(0,2)和B(2,-2)的所有圓中周長(zhǎng)最小的圓,
(1)求圓C1的方程;
(2)若圓C1與圓C2:x2+y2-6x-2y+5=0相交于點(diǎn)C、D,求公共弦長(zhǎng)|CD|.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

給出以下四個(gè)命題,所有真命題的序號(hào)為
 

①從總體中抽取樣本(x1,y1),(x2,y2),…,(xn,yn),若記
.
x
=
1
n
n
i=1
xi
,
.
y
=
1
n
n
i=1
yi
,則回歸直線y=bx+a必過點(diǎn)(
.
x
,
.
y
);
②將函數(shù)y=cos 2x的圖象向右平移
π
3
個(gè)單位,得到函數(shù)y=sin(2x-
π
6
)的圖象;
③已知數(shù)列{an},那么“對(duì)任意的n∈N*,點(diǎn)Pn(n,an)都在直線y=2x+1上”是“{an}為等差數(shù)列”的充分不必要條件;
④命題“若|x|≥2,則x≥2或x≤-2”的否命題是“若|x|≥2,則-2<x<2”.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

下列判斷,正確的是( 。
A、平行于同一平面的兩直線平行
B、垂直于同一直線的兩直線平行
C、垂直于同一平面的兩平面平行
D、垂直于同一平面的兩直線平行

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知橢圓C焦點(diǎn)在x軸上,短軸長(zhǎng)為2,離心率是
3
2

(1)求橢圓C的方程;
(2)設(shè)直線AB與橢圓C交于AB兩點(diǎn),直線AB的方程是y=x+1,求弦長(zhǎng)|AB|.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知正四面體的高為4,則此正四面體的內(nèi)切球的表面積為
 

查看答案和解析>>

同步練習(xí)冊(cè)答案