分析 (1)求出A、B的直角坐標(biāo),求出直線AB的極坐標(biāo)方程,根y=ρsinα,x=ρcosθ求出C的極坐標(biāo)方程即可;
(2)設(shè)射線l:θ=α,分別代入曲線C的方程和直線AB的方程,得到關(guān)于α的方程,求出tanα的值,從而求出答案.
解答 解:(1)A、B的直角坐標(biāo)分別是A(0,3),B(3$\sqrt{3}$,3),
故直線AB的極坐標(biāo)方程是ρsinθ=3,
曲線C化為極坐標(biāo)為ρ=2cosθ;
(2)設(shè)射線l:θ=α,代入曲線C得:ρM=2cosα,
代入直線AB得:ρM=$\frac{3}{sinα}$,
依題意得$\frac{3}{sinα}$•2cosα=2,解得:tanα=3.…(8分)
所以射線l所在直線的直角坐標(biāo)方程為:y=3x…(10分)
點評 本題考查了直角坐標(biāo)和極坐標(biāo)的轉(zhuǎn)化,考查求直線方程問題,是一道中檔題.
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 1或9 | B. | 6 | C. | 9 | D. | 以上都不對 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | [-2,+∞) | B. | (-∞,-2] | C. | (-∞,-6] | D. | [2,+∞) |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 若m∥n,m⊥α,則n⊥α | B. | 若m∥α,n∥α,則m∥n | C. | 若m⊥α,m∥β,則α∥β | D. | 若m∥α,α⊥β,則m⊥β |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com