已知α∈(-
π
2
,0),sin(-α-
3
2
π)=
5
5
,則sin(-π-α)=( 。
A、
5
5
B、
2
5
5
C、-
5
5
D、-
2
5
5
考點:運(yùn)用誘導(dǎo)公式化簡求值
專題:三角函數(shù)的求值
分析:已知等式左邊變形后,利用誘導(dǎo)公式化簡求出cosα的值,根據(jù)α的范圍,利用同角三角函數(shù)間的基本關(guān)系求出sinα的值,原式利用誘導(dǎo)公式化簡后將sinα的值代入計算即可求出值.
解答: 解:∵sin(-α-
3
2
π)=-sin(α+
3
2
π)=cosα=
5
5
,α∈(-
π
2
,0),
∴sinα=-
1-cos2α
=-
2
5
5
,
則sin(-π-α)=-sin(π+α)=sinα=-
2
5
5

故選:D.
點評:此題考查了運(yùn)用誘導(dǎo)公式化簡求值,熟練掌握誘導(dǎo)公式是解本題的關(guān)鍵.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

已知f(x)=x2-2009x,若f(m)=f(n),m≠n,則f(m+n)=
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

若復(fù)數(shù)z=3+4i,則
|z|
z
=(  )
A、
3
5
-
4
5
i
B、-
3
5
-
4
5
i
C、
3
5
+
4
5
i
D、-
3
5
+
4
5
i

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知f(x)是定義在R上的奇函數(shù),若對于x≥0,都有f(x+2)=f(x),且當(dāng)x∈[0,2]時,f(x)=ex-1,則f(2013)+f(-2014)=( 。
A、e-1B、1-e
C、-1-eD、e+1

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=
3
sinωx+cosωx的最小正周期為π.則函數(shù)f(x)在區(qū)間[-
π
4
,
π
4
]上的取值范圍是(  )
A、[-2,2]
B、[-2,
3
]
C、[-
3
,2]
D、[-
3
,
3
]

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

某工廠以x千克/小時的速度勻速生產(chǎn)某種產(chǎn)品(生產(chǎn)條件要求1≤x≤10),每小時可獲得的利潤是100(5x+1-
3
x
)元.若生產(chǎn)該產(chǎn)品900千克,則該工廠獲得最大利潤時的生產(chǎn)速度為( 。
A、5千克/小時
B、6千克/小時
C、7千克/小時
D、8千克/小時

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2x+
3
)4=a0+a1x+a2x2+a3x3
+a4x4,則(a0+a2+a4)2-(a1+a3)2的值為( 。
A、-1B、1C、2D、-2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

實數(shù)m分別取什么數(shù)值時,復(fù)數(shù)z=(m2+5m+6)+(m2-2m-15)i
(1)是實數(shù);
(2)是虛數(shù);
(3)是純虛數(shù);
(4)對應(yīng)點在x軸上方.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(文科)全集U=R,設(shè)集合A={x|1<x<4},集合B{x|x2-2x-3≤0},
(1)∁RA=
 

(2)A∩(∁RB)=
 

查看答案和解析>>

同步練習(xí)冊答案