分析 (1)連接OE,利用切線的性質(zhì)可得:OE⊥PE,又AB⊥CD,可得∠B+∠BFM=90°,又∠B=∠FEO,∠BFM=∠PFE,可得∠PEF=∠PFE,即可證明.
(2)由切割線定理可得:PE2=PD•PC,PE=PF,即可得出.
解答 (1)證明:連接OE,∵PE是圓O的一條切線,切點為E,∴OE⊥PE,
∴∠PEF+∠FEO=90°,
又∵AB⊥CD,∴∠B+∠BFM=90°,
又∵∠B=∠FEO,∴∠BFM=∠PEF,
又∵∠BFM=∠PFE,∴∠PEF=∠PFE,∴PE=PF.
∴△PEF為等腰三角形.
(2)解:由切割線定理可得:PE2=PD•PC,PE=PF=5,
∴PC=$\frac{{5}^{2}}{3}$=$\frac{25}{3}$.
∴DC=PC-PD=$\frac{16}{3}$.
點評 本題考查了圓的切線的性質(zhì)、切割線定理、等腰三角形的性質(zhì)、對頂角的性質(zhì)、圓的性質(zhì),考查了推理能力與計算能力,屬于中檔題.
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | a,b∈R,若a≠b≠0,則a2+b2=0 | B. | a,b∈R,若a=b≠0,則a2+b2≠0 | ||
C. | a,b∈R,若a≠0且b≠0,則a2+b2≠0 | D. | a,b∈R,若a≠0或b≠0,則a2+b2≠0 |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | 1 | B. | $\sqrt{3}$ | C. | 3 | D. | 2$\sqrt{3}$ |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | log23 | B. | log23或-1 | C. | log23或0 | D. | 0 |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:填空題
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com