O為坐標原點, 兩點分別在射線 上移動,且,動點P滿足,
記點P的軌跡為C.
(I)求的值;
(II)求P點的軌跡C的方程,并說明它表示怎樣的曲線?
(III)設點G(-1,0),若直線與曲線C交于M、N兩點,且M、N兩點都在以G為圓心的圓上,求的取值范圍.
(I)   
(II)軌跡C的方程為,它表示焦點在軸上的雙曲線.
(III)
(I) ∵,分別在射線上,

,

又∵     .
,     .
(II) 設可得


兩式相減有: .
、不同時為0,   
軌跡C的方程為,它表示焦點在軸上的雙曲線.
(III)
消去,整理得: .
∵直線與曲線C交于M、N兩點,



由(1)整理得:
由(3)有:
由(2)有.
又∵M、N在以點G為圓心的圓上,
設MN的中點為Q,則
,



       

又∵
.
整理得
把(6)代入(4)中有:

又由(6)有


于是
解得
再由.
綜合得的取值范圍為
練習冊系列答案
相關習題

科目:高中數(shù)學 來源:不詳 題型:解答題

(12分)已知AB是橢圓的一條弦,M(2,1)是AB的中點,以M為焦點且以橢圓E1的右準線為相應準線的雙曲線E2與直線AB交于點. (1)設雙曲線E2的離心率為,求關于的函數(shù)表達式; (2)當橢圓E1與雙曲線E2的離心率互為倒數(shù)時,求橢圓E1的方程.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題


查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:填空題


查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

如圖所示,已知圓,定點,為圓上一動點,點上,點上,且滿足,,點的軌跡為曲線

(Ⅰ) 求曲線的方程;
(Ⅱ) 若點在曲線上,線段的垂直平分線為直線,且成等差數(shù)列,求的值,并證明直線過定點;
(Ⅲ)若過定點(0,2)的直線交曲線于不同的兩點、(點在點、之間),且滿足,求的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

如圖,,雙曲線M是以B、C為焦點且過A點.(Ⅰ)建立適當?shù)淖鴺讼,求雙曲線M的方程;(Ⅱ)設過點E(1,0)的直線l分別與雙曲線M的左、右支交于F、G兩點,直線l的斜率為k,求k的取值范圍.;

(Ⅲ)對于(II)中的直線l,是否存在k使|OF|=|OG|
若有求出k的值,若沒有說明理由.(O為原點)

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

已知拋物線的頂點為橢圓的中心.橢圓的離心率是拋物線離心率的一半,且它們的準線互相平行。又拋物線與橢圓交于點,求拋物線與橢圓的方程.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題


在定義域(-1,1)內(nèi)可導,且,點A(1,());B((-),1),
對任意∈(-1,1)恒有成立,試在內(nèi)求滿足不等式(sincos)+(cos2)>0的的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:單選題

雙曲線的離心率為,雙曲線的離心率為,則+的最小值為( )
A.B.2C.D.4

查看答案和解析>>

同步練習冊答案