12.已知|$\overrightarrow a$|=1,|$\overrightarrow b$|=2,$\overrightarrow a$與$\overrightarrow b$的夾角為60°,若k$\overrightarrow a$+$\overrightarrow b$與$\overrightarrow b$垂直,則k的值為( 。
A.-4B.4C.-4$\sqrt{3}$D.4$\sqrt{3}$

分析 根據(jù)平面向量的數(shù)量積與向量垂直的定義,列出方程求解即可.

解答 解:∵|$\overrightarrow a$|=1,|$\overrightarrow b$|=2,$\overrightarrow a$與$\overrightarrow b$的夾角為60°,
∴$\overrightarrow{a}$•$\overrightarrow$=|$\overrightarrow{a}$|×|$\overrightarrow$|cos60°=1×2×$\frac{1}{2}$=1,
又k$\overrightarrow a$+$\overrightarrow b$與$\overrightarrow b$垂直,
∴(k$\overrightarrow{a}$+$\overrightarrow$)•$\overrightarrow$=k$\overrightarrow{a}$•$\overrightarrow$+${\overrightarrow}^{2}$=k+22=0,
解得k=-4.
故選:A.

點(diǎn)評 本題考查了平面向量的數(shù)量積與向量垂直的應(yīng)用問題,是基礎(chǔ)題目.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:填空題

17.已知函數(shù)f(x)=ln(x+$\sqrt{1+{x}^{2}}$)+$\frac{3{e}^{x}+1}{{e}^{x}+1}$在區(qū)間[-k,k](k>0)上的最大值為M,最小值為m,則M+m=4.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

3.計(jì)算下列各式
(1)$\root{3}{{(1+\sqrt{2}{)^3}}}+\root{4}{{(1-\sqrt{2}{)^4}}}$;
(2)${(-\frac{7}{6})^0}+{8^{0.25}}×\root{4}{2}+{(\root{3}{2}×\sqrt{3})^6}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

20.集合A={1,3,a},B={1,a2},問是否存在這樣的實(shí)數(shù)a,使得B⊆A,且A∩B={1,a}.若存在,求出實(shí)數(shù)a的值;若不存在,說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

7.F是橢圓$\frac{{x}^{2}}{4}$+$\frac{{y}^{2}}{3}$=1的右焦點(diǎn),A(1,1)為橢圓內(nèi)一定點(diǎn),P為橢圓上一動點(diǎn).則|PA|+|PF|的最小值為( 。
A.1B.2C.4-$\sqrt{5}$D.4+$\sqrt{5}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

17.已知直線2ax-by+2=0(a>0,b>0)經(jīng)過點(diǎn)(-1,2),則$\frac{1}{a}$+$\frac{1}$的最小值為4.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

4.已知函數(shù)f(x)=$\left\{\begin{array}{l}{f_1}(x),x∈[{0,\frac{1}{2}})\\{f_2}(x),x∈[{\frac{1}{2},1}]\end{array}$,其中f1(x)=-2(x-$\frac{1}{2}$)2+1,f2(x)=-2x+2.
(1)在如圖直角坐標(biāo)系中畫出y=f(x)的圖象;
(2)寫出y=f(x)的單調(diào)增區(qū)間;
(3)若x0∈[0,$\frac{1}{2}}$),x1=f(x0),f(x1)=x0.求x0的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

1.函數(shù)f(x)=$\sqrt{x}$+$\frac{1}{x-2}$的定義域是( 。
A.[0,2]∪(2,+∞)B.[0,+∞)C.[0,2)∪(2,+∞)D.(0,+∞)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

2.若數(shù)列{an}中的項(xiàng)都滿足a2n-1=a2n<a2n+1(n∈N*),則稱{an}為“階梯數(shù)列”.
(1)設(shè)數(shù)列{bn}是“階梯數(shù)列”,且b1=1,b2n+1=9b2n-1(n∈N*),求b2016;
(2)設(shè)數(shù)列{cn}是“階梯數(shù)列”,其前n項(xiàng)和為Sn,求證:{Sn}中存在連續(xù)三項(xiàng)成等差數(shù)列,但不存在連續(xù)四項(xiàng)成等差數(shù)列;
(3)設(shè)數(shù)列{dn}是“階梯數(shù)列”,且d1=1,d2n+1=d2n-1+2(n∈N*),記數(shù)列{$\frac{1}{oz82moo_{n}2qlsg1u_{n+2}}$}的前n項(xiàng)和為Tn,問是否存在實(shí)數(shù)t,使得(t-Tn)(t+$\frac{1}{{T}_{n}}$)<0對任意的n∈N*恒成立?若存在,請求出實(shí)數(shù)t的取值范圍;若不存在,請說明理由.

查看答案和解析>>

同步練習(xí)冊答案