分析 (1)利用2cos(A+B)=1,求角C;
(2)利用余弦定理求c的長(zhǎng);
(3)利用△ABC的面積S=$\frac{1}{2}$absinC,求△ABC的面積.
解答 解:(1)∵2cos(A+B)=1,
∴cosC=-$\frac{1}{2}$,
∴C=120°;
(2)∵a+b=2$\sqrt{3}$,ab=2,
∴a2+b2=8,
∴c2=a2+b2-2accosC=8-2×2×(-$\frac{1}{2}$)=10,
∴c=$\sqrt{10}$;
(3)△ABC的面積S=$\frac{1}{2}$absinC=$\frac{1}{2}×2×\frac{\sqrt{3}}{2}$=$\frac{\sqrt{3}}{2}$.
點(diǎn)評(píng) 本題考查余弦定理,考查三角形面積的就算,考查學(xué)生分析解決問(wèn)題的能力,屬于中檔題.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | -$\frac{n+2}{n}$ | B. | $\frac{2n+1}{2n-1}$ | C. | $-\frac{2n+1}{2n-1}$ | D. | -$\frac{n+1}{n-1}$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | $\frac{π}{6}$ | B. | $\frac{π}{4}$ | C. | $\frac{π}{3}$ | D. | $\frac{π}{2}$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | 0 | B. | -1 | C. | 1 | D. | 2 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com