13.已知函數(shù)f(x)=$\left\{\begin{array}{l}{2^x}-1,x≥2\\-{x^3}+3x,x<2\end{array}$,若函數(shù)y=f(x)-m有2個零點,則實數(shù)m的取值范圍是m=2或m≥3.

分析 畫出函數(shù)f(x)的圖象,結(jié)合圖象,求出m的范圍即可.

解答 解:畫出函數(shù)f(x)的圖象,如圖示:

若函數(shù)y=f(x)-m有2個零點,
結(jié)合圖象:m=2或m≥3,
故答案為:m=2或m≥3.

點評 本題考查了函數(shù)零點問題,考查數(shù)形結(jié)合思想以及轉(zhuǎn)化思想,是一道中檔題.

練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:選擇題

3.已知函數(shù)f(x)=asinx-$\frac{1}{2}$cos2x-$\frac{3}{a}$+$\frac{1}{2}$(a∈R,a≠0),若對任意x∈R都有f(x)<0,則a的取值范圍是( 。
A.[-$\frac{3}{2}$,0)B.[-1,0)∪(0,1]C.(0,1]D.[1,3]

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

4.在△ABC中,$\frac{{\overrightarrow{AB}•\overrightarrow{BC}}}{3}$=$\frac{{\overrightarrow{BC}•\overrightarrow{CA}}}{2}$=$\frac{{\overrightarrow{CA}•\overrightarrow{AB}}}{1}$,則sinA:sinB:sinC=( 。
A.5:3:4B.5:4:3C.$\sqrt{5}$:$\sqrt{3}$:2D.$\sqrt{5}$:2:$\sqrt{3}$

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

1.在△ABC中,角A,B,C的對邊分別為a,b,c,且b=$\sqrt{3}$,cosAsinB+(c-sinA)cos(A+C)=0.
(1)求角B的大;
(2)若△ABC的面積為$\frac{{\sqrt{3}}}{2}$,求sinA+sinC的值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

8.已知函數(shù)f(x)=$\frac{1}{2}$x2+alnx.
(1)若a=-1,求函數(shù)f(x)的單調(diào)區(qū)間.
(2)若a=1,求證:在區(qū)間[1,+∞)上,函數(shù)f(x)的圖象在g(x)=$\frac{2}{3}$x3的圖象下方.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

18.已知a為常數(shù),函數(shù)f(x)=x(lnx-ax)有兩個極值點x1,x2(x1<x2),則a的取值范圍是(  )
A.(0,$\frac{1}{2}$)B.(0,1)C.($\frac{1}{2}$,1)D.(1,2)

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

5.(1)求函數(shù)f(x)=$\frac{\sqrt{4-x}}{x-1}$的定義域.
(2)若f(x-1)=x2+2x+3,求f(x)的解析式.
(3)求函數(shù)f(x)=x2-2x+3在[0,3]上的最大值與最小值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

2.已知實數(shù)x,y滿足不等式組$\left\{\begin{array}{l}x≥0\\ x-2y+1≥0\\ x-y≤0\end{array}\right.$,且目標函數(shù)之z=ax+by (a>0,b>0)的最大值為2,則$\frac{2}{a}$+$\frac{1}$的最小值為$\frac{1}{2}(3+2\sqrt{2})$.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

18.某公司生產(chǎn)的某產(chǎn)品每件成本為40元,經(jīng)市場調(diào)查整理出如下信息:
時間:(第x天)13610
日銷量(m件)198194188180
①該產(chǎn)品90天內(nèi)日銷量(m件)與時間(第x天)滿足一次函數(shù)關(guān)系,部分數(shù)據(jù)如下表:
②該產(chǎn)品90天內(nèi)銷售價格(元/件)與時間(第x天)的關(guān)系如下表:
時間:(第x天)1≤x<5050≤x<90
銷售價格(元/件)x+60100
(1)求m關(guān)于x的函數(shù)關(guān)系;
(2)設(shè)銷售該產(chǎn)品每天利潤為y元,求y關(guān)于x的函數(shù)表達式;并求出在90天內(nèi)該產(chǎn)品哪天的銷售利潤最大?最大利潤是多少?[每天利潤=日銷量x(銷售價格-每件成本)].

查看答案和解析>>

同步練習冊答案