18.某單位用3240萬元購得一塊空地,計劃在該地塊上建造一棟至少15層的小高層、每層3000平方米的樓房.經(jīng)測算,如果將樓房建為x(x≥15)層,則每平方米的平均建筑費用為840+kx(單位:元).已知蓋15層每平方米的平均建筑費用為1245元.
(1)求k的值;
(2)當(dāng)樓房建為多少層時,樓房每平方米的平均綜合費用最少?(注:平均綜合費用=平均建筑費用+平均購地費用,平均購地費用=$\frac{購地總費用}{建筑總面積}$)

分析 (1)由代入和解方程,可得840+15k=1245的解;
(2)設(shè)樓房每平方米的平均綜合費用為f(x)元,可得f(x)=(840+27x)+$\frac{3240×10000}{3000x}$,求出導(dǎo)數(shù)和單調(diào)區(qū)間,可得極小值點,且為最小值點.

解答 解:(1)由題意可得840+15k=1245,解得k=27;
(2)設(shè)樓房每平方米的平均綜合費用為f(x)元,
則f(x)=(840+27x)+$\frac{3240×10000}{3000x}$=840+27x+$\frac{10800}{x}$,x>0且x∈N*,
f′(x)=27-$\frac{10800}{{x}^{2}}$,令f′(x)=0得x=20,

x(0,20)x=20(20,+∞)
f′(x)-0+
f(x)遞減極小值遞增
所以當(dāng)x=20時,f(x)有最小值.
答:為了使樓房每平方米的平均綜合費用最少,該樓房應(yīng)建為20層.

點評 本題考查導(dǎo)數(shù)在實際問題中的應(yīng)用:求最值,考查化簡整理的運算能力,正確列出函數(shù)的解析式和求出導(dǎo)數(shù)是解題的關(guān)鍵,屬于基礎(chǔ)題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:填空題

8.若關(guān)于x的方程(4x+$\frac{5}{x}$)-|5x-$\frac{4}{x}$|=m在(0,+∞)內(nèi)恰有三個相異實根,則實數(shù)m的取值范圍為(6,$\frac{41}{10}\sqrt{5}$).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

9.設(shè)函數(shù)f(x)=lg$\frac{5-x}{5+x}$,
(1)求f(x)的定義域;
(2)判斷函數(shù)的奇偶性.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

6.已知函數(shù)f(x)=lnx+ax-x2(a∈R).
(1)若f(x)≤0恒成立,求實數(shù)a的取值范圍;
(2)證明ln(n+1)<$\frac{2}{{1}^{2}}$+$\frac{3}{{2}^{2}}$+…+$\frac{n+1}{{n}^{2}}$(n為正整數(shù)).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

13.已知集合A={x|x≤2},B={x|x>a}.
(1)若A∩B=∅,求a的取值范圍;
(2)若A∪B=R,求a的取值范圍;
(3)若1∈A∩B,求a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

3.如圖,正方體ABCD-A1B1C1D1的棱長為2,線段B1D1上有兩個動點E,F(xiàn),且EF=$\sqrt{2}$,則下列結(jié)論中錯誤的是( 。
A.AC⊥BEB.EF∥平面ABCD
C.異面直線AE,BF所成的角為定值D.三棱錐B-AEF的體積為定值

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

10.作出下列各個函數(shù)的示意圖:
(1)y=2-2x;
(2)y=log${\;}_{\frac{1}{3}}$[3(x+2)];
(3)y=|log${\;}_{\frac{1}{2}}$(-x)|.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

13.如圖,在四棱錐P-ABCD中,平面PAD⊥底面ABCD,AB∥CD,PA=PD=AD=1,DC=2AB=4AD,∠ADC=120°,E為PC的中點.
(1)求證:直線BE∥平面PAD;
(2)求二面角P-BD-E的大。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

14.正方體ABCD-A1B1C1D1,異面直線A1C1與B1C所成的角是60°,直線A1C與平面ABCD所成角的正切值是$\frac{\sqrt{2}}{2}$,二面角A1-BD-A所成角的值是arctan$\sqrt{2}$,直線B1C1到平面ABCD的距離為B1B.

查看答案和解析>>

同步練習(xí)冊答案