如圖,在斜三棱柱ABC-A1B1C1中,點A1在底面ABC上的射影恰好是AB的中點O,底面ABC是正三角形,其重心為G點,D是BC中點,B1D交BC1于E.
(1)求證:GE∥側(cè)面AA1B1B;
(2)若AA1=AB,求直線BC1與底面ABC所成角.
考點:直線與平面所成的角,直線與平面平行的判定
專題:空間角
分析:(1)由已知得
DE
EB1
=
BD
B1C1
=
1
2
DE
EB1
=
DG
GA
=
1
2
,從而GE∥AB1,由此能證明GE∥側(cè)面AA1B1B.
(2)令AA1=AB=2,A1在底面ABC上的射影為AB中心O,連OD延長到H,使OD=DH,連C1H,BH,由A1C1
.
OH,得A1O
.
C1H,∠C1BH是直線BC1與底面ABC所成角,由此能求出直線BC1與底面ABC所成角.
解答: (1)證明:∵斜三棱柱ABC-A1B1C1中,
點A1在底面ABC上的射影恰好是AB的中點O,
底面ABC是正三角形,其重心為G點,D是BC中點,B1D交BC1于E,
DE
EB1
=
BD
B1C1
=
1
2
,
連結(jié)AB1,則
DE
EB1
=
DG
GA
=
1
2

∴GE∥AB1
∵GE不包含于側(cè)面AA1B1B,AB1?側(cè)面AA1B1B,
∴GE∥側(cè)面AA1B1B.
(2)解:令AA1=AB=2,A1在底面ABC上的射影為AB中心O,
連OD延長到H,使OD=DH,連C1H,BH,
則由A1C1
.
OH,得A1O
.
C1H,
∠C1BH是直線BC1與底面ABC所成角
C1H=
3
,BH=OC=
3
,
∴tan∠C1HB=1,∴C1BH=
π
4
,
∴直線BC1與底面ABC所成角為
π
4
點評:本題考查直線與平面平行的證明,考查直線與底面所成的角的大小的求法,解題時要認真審題,注意空間思維能力的培養(yǎng).
練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:

一個袋中裝著標有數(shù)字1,2,3,4,5的小球各2個,從袋中任取3個小球,每個小球被取出的可能性都相等,按3個小球上最大數(shù)字的9倍計分.用X表示取出的3個小球上的最大數(shù)字.求:
(Ⅰ)取出的3個小球上的數(shù)字互不相同的概率;
(Ⅱ)隨機變量X的分布列和均值;
(Ⅲ)計分介于20分到40分之間的概率.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

設(shè)函數(shù)f(x)=x2-x+alnx,其中a≠0.
(1)a=-6,求函數(shù)f(x)在[1,4]上的最值;
(2)設(shè)函數(shù)f(x)既有極大值,又有極小值,求實數(shù)a的取值范圍;
(3)求證:當n∈N*時,e n(n2-1)≥(n!)3

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知函數(shù)f(x)=ln(2-x)+ax,a>0,a∈R.
(1)設(shè)曲線y=f(x)在點(1,f(1))處的切線l平行于x軸,求a的值;
(2)求函數(shù)f(x)的單調(diào)區(qū)間;
(3)求函數(shù)f(x)的區(qū)間[0,1]上的最小值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知
a
=(2cosx,1),
b
=(cosx,
3
sin2x),且f(x)=
a
b
,
(1)求f(x)在x∈[-
π
3
π
3
]的最大值;
(2)若f(x)=1-
3
,x∈[-
π
3
,
π
3
],求x;
(3)函數(shù)f(x)的圖象可以由函數(shù)y=2sin2x的圖象經(jīng)過怎樣的變換得出?

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

設(shè)數(shù)列{an}的前n項和為Sn,已知a1=a(a≠3,a∈R),an+1=Sn+3n,n∈N*
(Ⅰ)設(shè)bn=Sn-3n ,n∈N*,求{bn}的通項公式;
(Ⅱ)求數(shù)列{an}的通項公式;
(Ⅲ)若an+1≥a,n∈N*,求a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知函數(shù)f(x)=alnx-x+
1
x
,g(x)=x2+x-b,y=f(x)圖象恒過定點P,且P點既在y=g(x)圖象上,又在y=f(x)的導函數(shù)的圖象上.
(1)求a,b的值;
(2)設(shè)h(x)=
f(x)
g(x)
,求證:當x>0且x≠1時,h(x)<0.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

袋中有一元人民幣兩枚,現(xiàn)依次有放回地隨機摸取3次,每次摸一枚硬幣.
(1)試問,一共有多少種不同的結(jié)果,列出所有可能的結(jié)果(其中正面朝上與反面朝上是不同的結(jié)果)
(2)若摸到正面朝上時得2分,摸到反面朝上得1分,求3次摸得總分為5分的概率.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

關(guān)于圖中的正方體ABCD-A1B1C1D1,下列說法正確的有:
 

①P點在線段BD上運動,棱錐P-AB1D1體積不變;
②P點在線段BD上運動,直線AP與平面A1B1C1D1平行;
③一個平面α截此正方體,如果截面是三角形,則必為銳角三角形;
④一個平面α截此正方體,如果截面是四邊形,則必為平行四邊形;
⑤平面α截正方體得到一個六邊形(如圖所示),則截面α在平面AB1D1與平面BDC1間平行移動時此六邊形周長先增大,后減。

查看答案和解析>>

同步練習冊答案