已知點(diǎn)A為半徑為3的球O1上任意一點(diǎn),BC為半徑為2的球O2的任意一條直徑,若兩球的球心重合,則
AB
AC
=( 。
分析:由直徑的任意性,取特殊位置,當(dāng)A、B、C三點(diǎn)共線時(shí),由數(shù)量積的定義易得答案.
解答:解:特殊位置法:當(dāng)A、B、C三點(diǎn)共線時(shí),
可得
AB
AC
=(3+2)(3-2)cos0=5
故選B
點(diǎn)評(píng):本題考查平面向量數(shù)量積的運(yùn)算,特殊位置是解決問(wèn)題的關(guān)鍵,屬基礎(chǔ)題.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

(2013•徐州三模)如圖,在平面直角坐標(biāo)系xOy中,已知橢圓E:
x2
a2
+
y2
b2
=1(a>b>0)
的離心率e=
3
2
,A1,A2分別是橢圓E的左、右兩個(gè)頂點(diǎn),圓A2的半徑為a,過(guò)點(diǎn)A1作圓A2的切線,切點(diǎn)為P,在x軸的上方交橢圓E于點(diǎn)Q.
(1)求直線OP的方程;
(2)求
PQ
QA1
的值;
(3)設(shè)a為常數(shù),過(guò)點(diǎn)O作兩條互相垂直的直線,分別交橢圓于點(diǎn)B、C,分別交圓A點(diǎn)M、N,記三角形OBC和三角形OMN的面積分別為S1,S2.求S1S2的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知點(diǎn)P是半徑為1的圓外一點(diǎn),過(guò)P作圓的兩條切線PA,PB,切點(diǎn)分別為A,B,則
PA
PB
的最小值為
-3+2
2
-3+2
2

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:湖北省武漢市武昌區(qū)2012屆高三5月調(diào)研考試數(shù)學(xué)文科試題 題型:013

已知點(diǎn)P在半徑為1的半圓周上沿著A→P→B路徑運(yùn)動(dòng),設(shè)弧的長(zhǎng)度為x,弓形面積為f(x)(如圖所示的陰影部分),則關(guān)于函數(shù)y=f(x)的有如下結(jié)論:

①函數(shù)y=f(x)的定義域和值域都是[0,π];

②如果函數(shù)y=f(x)的定義域R,則函數(shù)y=f(x)是周期函數(shù);

③如果函數(shù)y=f(x)的定義域R,則函數(shù)y=f(x)是奇函數(shù);

④函數(shù)y=f(x)在區(qū)間[0,π]上是單調(diào)遞增函數(shù).

以上結(jié)論的正確個(gè)數(shù)是

[  ]

A.1

B.2

C.3

D.4

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:2011-2012學(xué)年湖北省武漢市武昌區(qū)高三5月調(diào)研考試文科數(shù)學(xué)試卷(解析版) 題型:選擇題

已知點(diǎn)P在半徑為1的半圓周上沿著APB路徑運(yùn)動(dòng),設(shè)弧   的長(zhǎng)度為x,弓形面積為(如圖所示的陰影部分),則關(guān)于函數(shù)的有如下結(jié)論:

①函數(shù)的定義域和值域都是;

②如果函數(shù)的定義域R,則函數(shù)是周期函數(shù);

③如果函數(shù)的定義域R,則函數(shù)是奇函數(shù);

④函數(shù)在區(qū)間上是單調(diào)遞增函數(shù).

以上結(jié)論的正確個(gè)數(shù)是(  )

A.1            B.2          C.3             D.4

 

查看答案和解析>>

同步練習(xí)冊(cè)答案