若二次函數(shù)f(x)=ax2+bx+c(a≠0)的圖象和直線y=3x無(wú)交點(diǎn),現(xiàn)有下列結(jié)論:
①方程f(f(x))=9x一定沒有實(shí)數(shù)根; 
②若a<0,則必存在實(shí)數(shù)x0,使f(f(x0))>9x0;
③函數(shù)g(x)=ax2-bx+c的圖象與直線y=-3x也一定沒有交點(diǎn);
④若a+b+c=0,則不等式f(f(x))<9x對(duì)一切實(shí)數(shù)都成立;
其中正確的結(jié)論是
 
考點(diǎn):二次函數(shù)的性質(zhì)
專題:函數(shù)的性質(zhì)及應(yīng)用
分析:由函數(shù)f(x)的圖象與直線y=3x沒有交點(diǎn),所以f(x)>3x(a>0)或f(x)<3x(a<0)恒成立.進(jìn)而逐一由此判斷①~④的真假即可得到答案.
解答: 解:∵函數(shù)f(x)的圖象與直線y=3x沒有交點(diǎn),所以f(x)>3x(a>0)或f(x)<3x(a<0)恒成立.
因?yàn)閒(f(x))>3f(x)>9x或f(f(x))<3f(x)<9x恒成立,所以f(f(x))=9x沒有實(shí)數(shù)根;
故①正確;
若a<0,由題意知,二次函數(shù)的圖象必在直線y=3x的圖象下方,則不等式f(f(x)<9x對(duì)一切實(shí)數(shù)x都成立,所以不存在x0,使f(f(x0))>9x0
故②錯(cuò)誤;
函數(shù)g(x)=f(-x),與f(x)的圖象關(guān)于y軸對(duì)稱,所以g(x)和直線y=-3x也一定沒有交點(diǎn).
故③正確;
若a+b+c=0,則f(1)=0,此時(shí)y=3x=3,故a<0,由①得:不等式f(f(x))<9x對(duì)一切實(shí)數(shù)都成立;
故④正確;
故正確的結(jié)論有:①③④
故答案為:①③④
點(diǎn)評(píng):本題考查的知識(shí)點(diǎn)是命題的真假判斷與應(yīng)用,其中根據(jù)已知得到f(x)>3x(a>0)或f(x)<3x(a<0)恒成立是解答本題的關(guān)鍵.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

大家知道:在平面幾何中,三角形的三條中線相交于一點(diǎn),這個(gè)點(diǎn)叫三角形的重心,并且重心分中線之比為2:1(從頂點(diǎn)到中點(diǎn)).據(jù)此,我們拓展到空間:把空間四面體的頂點(diǎn)與對(duì)面三角形的重心的連線叫空間四面體的中軸線,則四條中軸線相交于一點(diǎn),這點(diǎn)叫此四面體的重心.類比上述命題,請(qǐng)寫出四面體重心的一條性質(zhì):
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

函數(shù)f(x)=4x-2x+1+2的值域是
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

若z=1+i,則|z•
.
z
-z-1|=
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

在△ABC中,已知tanA=
1
4
,tanB=
3
5
,且△ABC最大邊的長(zhǎng)為
17
,則△ABC最小邊的長(zhǎng)為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

向量
a
=(x-3,2),
b
=(x,x),若
a
b
=2,則x=
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知空間四面體O-ABC,點(diǎn)P滿足
OP
=
1
6
OA
+
1
3
OB
+
1
2
OC
,記四面體O-ABP、O-BCP、O-ACP的體積依次為V1,V2,V3,則V1:V2:V3=
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

下列命題中真命題為
 
.(只填正確命題的序號(hào))
①函數(shù)f(x)=
3x-5
2x+1
的圖象關(guān)于點(diǎn)(-
1
2
,
3
2
)對(duì)稱;
②命題“任意x∈R,均有x2+2x-3≥0”的否定是:“存在x∈R,使得x2+2x-3<0
③函數(shù)f(x)=(x-1)2在點(diǎn)(0,1)處的切線與坐標(biāo)軸圍成圖形的面積是1;
④將函數(shù)f(x)=sin(x-
π
4
)(x∈R)的圖象向右平移
π
4
個(gè)單位得到的圖象關(guān)于y軸對(duì)稱.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

i是虛數(shù)單位,復(fù)數(shù)z=1+
1
i
在復(fù)平面內(nèi)對(duì)應(yīng)的點(diǎn)位于( 。
A、第一象限B、第二象限
C、第三象限D、第四象限

查看答案和解析>>

同步練習(xí)冊(cè)答案