【題目】解關(guān)于x的不等式ax2﹣(a+2)x+2<0(a∈R).
【答案】解:①若a=0,則原不等式變?yōu)椹?x+2<0即x>1
此時原不等式解集為{x|x>1};
②若a>0,則
。 >1,即0<a<2時,原不等式的解集為{x|1<x< };
ⅱ) =1,即a=2時,原不等式的解集為;
ⅲ) <1,即a>2時,原不等式的解集為{x| <x<1};
③若a<0,則原不等式變?yōu)椋ī乤x+2)(x﹣1)>0,
解得x>1或x< ,
原不等式的解集為{x|x< 或x>1}
【解析】討論a=0,a>0和a<0時,原不等式的解集分別是什么即可.
【考點精析】解答此題的關(guān)鍵在于理解解一元二次不等式的相關(guān)知識,掌握求一元二次不等式解集的步驟:一化:化二次項前的系數(shù)為正數(shù);二判:判斷對應(yīng)方程的根;三求:求對應(yīng)方程的根;四畫:畫出對應(yīng)函數(shù)的圖象;五解集:根據(jù)圖象寫出不等式的解集;規(guī)律:當(dāng)二次項系數(shù)為正時,小于取中間,大于取兩邊.
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在數(shù)列中, ,其前項和為,滿足,其中.
(1)設(shè),證明:數(shù)列是等差數(shù)列;
(2)設(shè)為數(shù)列的前項和,求;
(3)設(shè)數(shù)列的通項公式為為非零整數(shù)),試確定的值,使得對任意,都有數(shù)列為遞增數(shù)列.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知關(guān)于x的一元二次函數(shù),分別從集合P和Q中隨機取一個數(shù)a和b得到數(shù)對。
(1)若,,求函數(shù)在內(nèi)是偶函數(shù)的概率;
(2)若,,求函數(shù)有零點的概率;
(3)若,,求函數(shù)在區(qū)間上是增函數(shù)的概率。
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知變量 滿足約束條件 ,若目標(biāo)函數(shù) 僅在點(5,3)處取得最小值,則實數(shù)的取值范圍為_______________。
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知△ABC的三個內(nèi)角A、B、C所對的邊分別為a,b,c,且4sin2 ﹣cos2A=
(1)求角A的大小,
(2)若a= ,cosB= ,求△ABC的面積.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知數(shù)列滿足, ,其中.
(1)設(shè),求證:數(shù)列是等差數(shù)列,并求出的通項公式;
(2)設(shè),數(shù)列的前項和為,是否存在正整數(shù),使得對于恒成立,若存在,求出的最小值,若不存在,請說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知、分別是橢圓的左頂點、右焦點,點為橢圓上一動點,當(dāng)軸時, .
(1)求橢圓的離心率;
(2)若橢圓存在點,使得四邊形是平行四邊形(點在第一象限),求直線與的斜率之積;
(3)記圓為橢圓的“關(guān)聯(lián)圓”. 若,過點作橢圓的“關(guān)聯(lián)圓”的兩條切線,切點為、,直線的橫、縱截距分別為、,求證: 為定值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù).
(1)若,則當(dāng)時,討論單調(diào)性;
(2)若,且當(dāng)時,不等式在區(qū)間上有解,求實數(shù)的取值范圍.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com