已知對(duì)任意,恒成立(其中),求的最大值.
的最大值為.
解析試題分析:利用二倍角公式,利用換元法,將原不等式轉(zhuǎn)化為二次不等式在區(qū)間上恒成立,利用二次函數(shù)的零點(diǎn)分布進(jìn)行討論,從而得出的最大值,但是在對(duì)時(shí)的情況下,主要對(duì)二次函數(shù)的對(duì)稱(chēng)軸是否在區(qū)間進(jìn)行分類(lèi)討論,再將問(wèn)題轉(zhuǎn)化為的條件下,求的最大值,
試題解析:由題意知,
令,,則當(dāng),恒成立,開(kāi)口向上,
①當(dāng)時(shí),,不滿(mǎn)足,恒成立,
②當(dāng)時(shí),則必有 (1)
當(dāng)對(duì)稱(chēng)軸時(shí),即,也即時(shí),有,
則,,則,當(dāng),時(shí),.
當(dāng)對(duì)稱(chēng)軸時(shí),即,也即時(shí),
則必有,即,又由(1)知,
則由于,故只需成立即可,
問(wèn)題轉(zhuǎn)化為的條件下,求的最大值,然后利用代數(shù)式的結(jié)構(gòu)特點(diǎn)或從題干中的式子出發(fā),分別利用三角換元法、導(dǎo)數(shù)法以及柯西不等式法來(lái)求的最大值.
法一:(三角換元)把條件配方得:,
,所以,
;
法二:(導(dǎo)數(shù))
令 則即求函數(shù)的導(dǎo)數(shù),橢圓的上半部分
;
法三:(柯西不等式)由柯西不等式可知:
,當(dāng)且僅當(dāng),即及時(shí)等號(hào)成立.即當(dāng)時(shí),最大值為2.
綜上可知.
考點(diǎn):1.二倍角;2.換元法;3.二次不等式的恒成立問(wèn)題;4.導(dǎo)數(shù);5.柯西不等式
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
已知函數(shù)f(x)=m-|x-2|,m∈R,且f(x+2)≥0的解集為[-1,1].
(1)求m的值;
(2)若a,b,c∈R,且=m,求證:a+2b+3c≥9.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
已知函數(shù)f(x)=|3x-6|-|x-4|.
(1)作出函數(shù)y=f(x)的圖象;
(2)解不等式|3x-6|-|x-4|>2x.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
設(shè)函數(shù)
(1)若時(shí),解不等式;
(2)若不等式的對(duì)一切恒成立,求實(shí)數(shù)的取值范圍
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
[選修4 - 5:不等式選講](本小題滿(mǎn)分10分)
設(shè),實(shí)數(shù)滿(mǎn)足,求證:.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話(huà):027-86699610 舉報(bào)郵箱:58377363@163.com