【題目】已知函數(shù)f(x)的圖象在[a,b]上連續(xù)不斷,定義:
f1(x)=min{f(t)| a≤t≤x}(x∈[a,b]),
f2(x)=max{f(t)| a≤t≤x}(x∈[a,b])。
其中,min{f(x)| x∈D}表示函數(shù)f(x)在D上的最小值,max{f(x)|x∈D}表示函數(shù)f(x)在D上的最大值。若存在最小正整數(shù)k,使得f2(x)-f1(x)≤k(x-a)對(duì)任意的x∈[a,b]成立,則稱函數(shù)f(x)為[a,b]上的“k階收縮函數(shù)”。
(1)若f(x)=sinx,x∈[, ],請(qǐng)直接寫(xiě)出f1(x),f2(x)的表達(dá)式;
(2)已知函數(shù)f(x)=(x-1)2,x∈[-1,4],試判斷f(x)是否為[-1,4]上的“k階收縮函數(shù)”,如果是,求出對(duì)應(yīng)的k;如果不是,請(qǐng)說(shuō)明理由。
【答案】(1) f1(x)=-1,x [-, ];f2(x)=sinx,x [-, ] (2) 存在k=4
【解析】試題分析: (1)由題意可得:f1(x)=-1,x [-, ];f2(x)=sinx,x [-, ]; (2)由函數(shù)f(x)=(x-1)2,x∈[-1,4],寫(xiě)出f1(x)和f2(x)的解析式,根據(jù)f2(x)-f1(x)≤k(x-a)對(duì)任意的x∈[a,b]成立,分段列出不等式,求出函數(shù)最值代入,可得k的取值范圍,即存在k=4,使得f(x)是[-1,4]上的4階收縮函數(shù).
試題解析:
(1)由題意可得:f1(x)=-1,x [-, ];f2(x)=sinx,x [-, ].
(2)f1(x)=f2(x)=
f2(x)-f1(x)=
當(dāng)x∈[-1,1)時(shí),3+2x-x2≤k(x+1),所以k≥3-x,所以k≥4;
當(dāng)x∈[1,3)時(shí),4≤k(x+1),所以k≥,所以k≥2;
當(dāng)x∈[3,4]時(shí),(x-1)2≤k(x+1),所以k≥,所以k≥.
綜上所述,k≥4,即存在k=4,使得f(x)是[-1,4]上的4階收縮函數(shù)。
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】2017年,在國(guó)家創(chuàng)新驅(qū)動(dòng)戰(zhàn)略下,北斗系統(tǒng)作為一項(xiàng)國(guó)家高科技工程,一個(gè)開(kāi)放型的創(chuàng)新平臺(tái),1400多個(gè)北斗基站遍布全國(guó),上萬(wàn)臺(tái)套設(shè)備組成星地“一張網(wǎng)”,國(guó)內(nèi)定位精度全部達(dá)到亞米級(jí),部分地區(qū)達(dá)到分米級(jí),最高精度甚至可以達(dá)到厘米或毫米級(jí)。最近北斗三號(hào)工程耗資9萬(wàn)元建成一小型設(shè)備,已知這臺(tái)設(shè)備從啟用的第一天起連續(xù)使用,第天的維修保養(yǎng)費(fèi)為元,使用它直至“報(bào)廢最合算”(所謂“報(bào)廢最合算”是指使用這臺(tái)儀器的平均每天耗資最少)為止,一共使用了多少天,平均每天耗資多少錢(qián)?
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù)f(x)是定義在R上的奇函數(shù),且當(dāng)x≥0時(shí),f(x)=.
(1)求f(x)的解析式;
(2)判斷f(x)的單調(diào)性;
(3)若對(duì)任意的t∈R,不等式f(k-3t2)+f(t2+2t)≤0恒成立,求k的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】函數(shù)f(x)=|x|﹣2|x+3|.
(1)解不等式f(x)≥2;
(2)若存在x∈R使不等式f(x)﹣|3t﹣2|≥0成立,求參數(shù)t的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】在平面直角坐標(biāo)系中,過(guò)點(diǎn)的直線的參數(shù)方程為(為參數(shù), 為的傾斜角).以坐標(biāo)原點(diǎn)為極點(diǎn), 軸的正半軸為極軸,建立極坐標(biāo)系.曲線,曲線.
(1)若直線與有且僅有一個(gè)公共點(diǎn),求直線的極坐標(biāo)方程;
(2)若直線與曲線交于不同兩點(diǎn),與交于不同兩點(diǎn),這四點(diǎn)從左到右依次為,求的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】設(shè)m是實(shí)數(shù),,若函數(shù)為奇函數(shù).
求m的值;
用定義證明函數(shù)在R上單調(diào)遞增;
若不等式對(duì)任意恒成立,求實(shí)數(shù)k的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】供電部門(mén)對(duì)某社區(qū)1000位居民2017年12月份人均用電情況進(jìn)行統(tǒng)計(jì)后,按人均用電量分為五組,整理得到如下的頻率分布直方圖,則下列說(shuō)法錯(cuò)誤的是( )
A. 12月份人均用電量人數(shù)最多的一組有400人
B. 12月份人均用電量不低于20度的有500人
C. 12月份人均用電量為25度
D. 在這1000位居民中任選1位協(xié)助收費(fèi),選到的居民用電量在—組的概率為
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】隨著互聯(lián)網(wǎng)的發(fā)展,移動(dòng)支付又稱手機(jī)支付逐漸深入人民群眾的生活某學(xué)校興趣小組為了了解移動(dòng)支付在人民群眾中的熟知度,對(duì)歲的人群隨機(jī)抽樣調(diào)查,調(diào)查的問(wèn)題是你會(huì)使用移動(dòng)支付嗎?”其中,回答“會(huì)”的共有50個(gè)人,把這50個(gè)人按照年齡分成5組,并繪制出頻率分布表部分?jǐn)?shù)據(jù)模糊不清如表:
分組 | 頻數(shù) | 頻率 | |
第1組 | 10 | ||
第2組 | |||
第3組 | 15 | ||
第4組 | |||
第5組 | 2 | ||
合計(jì) | 50 |
表中處的數(shù)據(jù)分別是多少?
從第1組,第3組,第4組中用分層抽樣的方法抽取6人,求每組抽取的人數(shù).
在抽取的6人中再隨機(jī)抽取2人,求所抽取的2人來(lái)自同一個(gè)組的概率.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】網(wǎng)格紙的各小格都是邊長(zhǎng)為1的正方形,圖中粗實(shí)線畫(huà)出的是一個(gè)幾何體的三視圖,其中正視圖是正三角形,則該幾何體的外接球表面積為( )
A.
B.
C.
D.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com