精英家教網 > 高中數學 > 題目詳情
長方體ABCD-A1B1C1D1中,ABAA1=2,AD=1,ECC1的中點,則異面直線BC1AE所成角的余弦值為 (  ).                  
A.B.C.D.
B
建立坐標系如圖所示.

A(1,0,0),E(0,2,1),B(1,2,0),C1(0,2,2),=(-1,0,2),=(-1,2,1).
cos〈,〉=.
所以異面直線BC1AE所成角的余弦值為.
練習冊系列答案
相關習題

科目:高中數學 來源:不詳 題型:解答題

如圖,在矩形ABCD中,AB=2AD=2,OCD的中點,沿AO將△AOD折起,使DB.

(1)求證:平面AOD⊥平面ABCO;
(2)求直線BC與平面ABD所成角的正弦值.

查看答案和解析>>

科目:高中數學 來源:不詳 題型:解答題

如圖,直三棱柱ABC-A1B1C1中,△ABC是等邊三角形,DBC的中點.

(1)求證:A1B∥平面ADC1;
(2)若ABBB1=2,求A1D與平面AC1D所成角的正弦值.

查看答案和解析>>

科目:高中數學 來源:不詳 題型:解答題

如圖,在四棱錐中,⊥平面,底面為梯形,,,點在棱上,且

(1)當時,求證:∥面;
(2)若直線與平面所成角為,求實數的值.

查看答案和解析>>

科目:高中數學 來源:不詳 題型:解答題

如圖,在四棱錐中,底面是邊長為的菱形,,底面, ,的中點,的中點.

(Ⅰ)證明:直線平面
(Ⅱ)求異面直線所成角的大;

查看答案和解析>>

科目:高中數學 來源:不詳 題型:解答題

如圖,在多面體ABCDE中,DB⊥平面ABC,AE∥DB,且△ABC是邊長為2的等邊三角形,AE=1,CD與平面ABDE所成角的正弦值為

(Ⅰ)若F是線段CD的中點,證明:EF⊥面DBC;
(Ⅱ)求二面角D-EC-B的平面角的余弦值.

查看答案和解析>>

科目:高中數學 來源:不詳 題型:單選題

如圖,在正四棱柱ABCD-A1B1C1D1中,AA1=2,ABBC=1,動點P,Q分別在線段C1D,AC上,則線段PQ長度的最小值是(  ).
A.B.C.D.

查看答案和解析>>

科目:高中數學 來源:不詳 題型:解答題

如圖,在正方體中,是棱的中點,在棱上.
,若二面角的余弦值為,求實數的值.

查看答案和解析>>

科目:高中數學 來源:不詳 題型:單選題

若向量a=(1,1),b=(-1,1),c=(4,2),則c=()
A.3a+bB.3a-bC.-a+3bD.a+3b

查看答案和解析>>

同步練習冊答案