分析 (1)若函數(shù)f(x)=loga(ax+1)+mx是偶函數(shù).則f(-x)=f(x),進(jìn)而可得m的值;
(2)令loga(ax+1)+mx=-mx+n,即n=loga(ax+1)+2mx=loga(ax+1)-x,求出函數(shù)的值域,可得答案.
解答 解:(1)∵函數(shù)f(x)=loga(ax+1)+mx是偶函數(shù).
∴f(-x)=f(x),
即loga(a-x+1)-mx=loga(ax+1)+mx,
即loga($\frac{{a}^{-x}+1}{{a}^{x}+1}$)=-x=2mx,
解得:m=-$\frac{1}{2}$;
(2)令loga(ax+1)+mx=-mx+n,
即n=loga(ax+1)+2mx=loga(ax+1)-x,
n′=$\frac{{a}^{x}}{{a}^{x}+1}$-1=$\frac{-1}{{a}^{x}+1}$<0恒成立,
即n=loga(ax+1)-x為減函數(shù),
∵$\lim_{x→-∞}{log}_{a}({a}^{x}+1)-x$→+∞,
$\lim_{x→+∞}{log}_{a}({a}^{x}+1)-x$→0,
故n∈(0,+∞),
若函數(shù)f(x)的圖象與直線l:y=-mx+n無公共點(diǎn),則n∈(-∞,0]
點(diǎn)評(píng) 本題考查的知識(shí)點(diǎn)是函數(shù)的圖象,函數(shù)的奇偶性,利用導(dǎo)數(shù)研究函數(shù)的單調(diào)性,難度中檔.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | sinα | B. | -sinα | C. | cosα | D. | -cosα |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | $\frac{1}{2}$ | B. | -$\frac{1}{2}$ | C. | $\frac{\sqrt{2}}{4}$ | D. | -$\frac{\sqrt{2}}{4}$ |
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com