已知函數(shù)f(x)=x-
1
xm
f(2)=
3
2
,x∈(0,+∞)

(1)判斷f(x)在其定義域上的單調(diào)性并證明;
(2)若f(3x-2-1)<f(9x-1),求x的取值范圍.
分析:(1)先根據(jù)f(x)的解析式,求出m的值,然后在定義域內(nèi)任取兩個(gè)值,并規(guī)定大小,判定它們函數(shù)值差的符號(hào),根據(jù)單調(diào)性的定義進(jìn)行判定;
(2)先根據(jù)題意可知3x-2-1與9x-1都應(yīng)在定義域內(nèi),在根據(jù)函數(shù)f(x)的單調(diào)性建立關(guān)系式,最后解不等式組即可求出x的范圍.
解答:解:(1)∵f(2)=
3
2
,
2-
1
2m
=
3
2

∴m=1,
f(x)=x-
1
x
(3分)
在(0,+∞)內(nèi)任取兩個(gè)值x1,x2,且x1<x2(4分)
f(x1)-f(x2)=(x1-
1
x1
)-(x2-
1
x2
)=
(x1-x2)(1+x1x2)
x1x2
(7分)
∵x1<x2,∴x1-x2<0,∵x1>0,x2>0,
∴x1x2>0,1+x1x2>0,∴f(x1)<f(x2)(9分)
所以f(x)在其定義域上是單調(diào)增函數(shù).(10分)
(2)由題意得:
3x-2-1>0
9x-1>0
3x-2-1<9x-1
(13分)
x>2
x>0
x>-2
,∴x>2
(16分)
點(diǎn)評(píng):本題主要考查了函數(shù)單調(diào)性的應(yīng)用,函數(shù)單調(diào)性在高考中的考查是比較常見的,屬于屬于基礎(chǔ)題.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=x-2m2+m+3(m∈Z)為偶函數(shù),且f(3)<f(5).
(1)求m的值,并確定f(x)的解析式;
(2)若g(x)=loga[f(x)-ax](a>0且a≠1),是否存在實(shí)數(shù)a,使g(x)在區(qū)間[2,3]上的最大值為2,若存在,請(qǐng)求出a的值,若不存在,請(qǐng)說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2011•上海模擬)已知函數(shù)f(x)=(
x
a
-1)2+(
b
x
-1)2,x∈(0,+∞)
,其中0<a<b.
(1)當(dāng)a=1,b=2時(shí),求f(x)的最小值;
(2)若f(a)≥2m-1對(duì)任意0<a<b恒成立,求實(shí)數(shù)m的取值范圍;
(3)設(shè)k、c>0,當(dāng)a=k2,b=(k+c)2時(shí),記f(x)=f1(x);當(dāng)a=(k+c)2,b=(k+2c)2時(shí),記f(x)=f2(x).
求證:f1(x)+f2(x)>
4c2
k(k+c)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:浙江省東陽中學(xué)高三10月階段性考試數(shù)學(xué)理科試題 題型:022

已知函數(shù)f(x)的圖像在[a,b]上連續(xù)不斷,f1(x)=min{f(t)|a≤t≤x}(x∈[a,b]),f2(x)=max{f(t)|a≤t≤x}(x∈[a,b]),其中,min{f(x)|x∈D}表示函數(shù)f(x)在D上的最小值,max{f(x)|x∈D}表示函數(shù)f(x)在D上的最大值,若存在最小正整數(shù)k,使得f2(x)-f1(x)≤k(x-a)對(duì)任意的x∈[a,b]成立,則稱函數(shù)f(x)為[a,b]上的“k階收縮函數(shù)”.已知函數(shù)f(x)=x2,x∈[-1,4]為[-1,4]上的“k階收縮函數(shù)”,則k的值是_________.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:上海模擬 題型:解答題

已知函數(shù)f(x)=(
x
a
-1)2+(
b
x
-1)2,x∈(0,+∞)
,其中0<a<b.
(1)當(dāng)a=1,b=2時(shí),求f(x)的最小值;
(2)若f(a)≥2m-1對(duì)任意0<a<b恒成立,求實(shí)數(shù)m的取值范圍;
(3)設(shè)k、c>0,當(dāng)a=k2,b=(k+c)2時(shí),記f(x)=f1(x);當(dāng)a=(k+c)2,b=(k+2c)2時(shí),記f(x)=f2(x).
求證:f1(x)+f2(x)>
4c2
k(k+c)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2009-2010學(xué)年河南省許昌市長葛三高高三第七次考試數(shù)學(xué)試卷(理科)(解析版) 題型:選擇題

已知函數(shù)f(x)、g(x),下列說法正確的是( )
A.f(x)是奇函數(shù),g(x)是奇函數(shù),則f(x)+g(x)是奇函數(shù)
B.f(x)是偶函數(shù),g(x)是偶函數(shù),則f(x)+g(x)是偶函數(shù)
C.f(x)是奇函數(shù),g(x)是偶函數(shù),則f(x)+g(x)一定是奇函數(shù)或偶函數(shù)
D.f(x)是奇函數(shù),g(x)是偶函數(shù),則f(x)+g(x)可以是奇函數(shù)或偶函數(shù)

查看答案和解析>>

同步練習(xí)冊(cè)答案