設(shè)x,y滿足約束條件
x-4y≤-3
3x+5y≤25
x≥1
,求z=x-y的最大值與最小值.
分析:作出題中不等式組表示的平面區(qū)域,得到如圖的△ABC及其內(nèi)部,再將目標(biāo)函數(shù)z=x-y對應(yīng)的直線進(jìn)行平移,觀察直線在y軸上的截距變化,即可求出z=x-y的最大值與最小值.
解答:解:作出不等式組
x-4y≤-3
3x+5y≤25
x≥1
表示的平面區(qū)域,
得到如圖的△ABC及其內(nèi)部,其中A(1,1),B(5,2),C(1,
22
5
).
設(shè)z=F(x,y)=x-y,將直線l:z=x-y進(jìn)行平移,
觀察直線在y軸上的截距變化,可得當(dāng)l經(jīng)過點B時,目標(biāo)函數(shù)z達(dá)到最大值;
當(dāng)l經(jīng)過點C時,目標(biāo)函數(shù)z達(dá)到最小值;
∴zmax=F(5,2)=5-2=3;
zmin=F(1,
22
5
)=1-
22
5
=-
17
5

即z=x-y的最大值與最小值分別為3、-
17
5
點評:本題給出二元一次不等式組,求目標(biāo)函數(shù)z=x-y的最大值與最小值,著重考查了二元一次不等式組表示的平面區(qū)域和簡單的線性規(guī)劃等知識,屬于基礎(chǔ)題.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)x,y滿足約束條件
x+y≤1
y≤x
y≥-2
,則z=3x+y的最大值為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)x,y滿足約束條件
3x-y-6≤0
x-y+2≥0
x≥0,y≥0
,若目標(biāo)函數(shù)z=ax+by(a>0,b>0)的最大值為12,則
3
a
+
2
b
的最小值為( 。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2011•奉賢區(qū)二模)(文)設(shè)x,y滿足約束條件
x≥0
y≥0
x
3a
+
y
4a
≤1
z=
y+1
x+1
的最小值為
1
4
,則a的值
1
1

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)x,y滿足約束條件
x-y+2≥0
4x-y-4≤0
x≥0
y≥0
,若目標(biāo)函數(shù)z=ax+by(a>0,b>0)的最大值為6,則w=2ab的最大值為( 。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)x,y滿足約束條件
x+y≥0
x-y+3≥0
x≤3
,則z=2x-y的最大值為
 

查看答案和解析>>

同步練習(xí)冊答案