解關(guān)于x的不等式ax2-(1+a)x+1>0.
分析:先將不等式ax2-(1+a)x+1>0化為(x-1)(ax-1)>0,再對參數(shù)a的取值范圍進行討論,分類解不等式
解答:解:原不等式可化為(x-1)(ax-1)>0
10當a>1時,1>
1
a
,x∈(1,+∞)∪(-∞,
1
a
)

20當a=1時,x∈{x|x≠1};
30當0<a<1時,1<
1
a
,x∈(-∞,1)∪(
1
a
,+∞)
;
40 當a=0時,x∈{x|x<1};
50當a<0時,x∈(
1
a
,1)
點評:本題考查一元二次不等式的解法,解題的關(guān)鍵是對參數(shù)的范圍進行分類討論,分類解不等式,此題是一元二次不等式解法中的難題,易因為分類不清與分類有遺漏導致解題失敗,解答此類題時要嚴謹,避免考慮不完善出錯.
練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:

解關(guān)于x的不等式ax-
3
x
+1
1
a
(其中a>0且a≠1).

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

解關(guān)于x的不等式ax+5<a4x-1(a>0,且a≠1).

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知loga(a2+1)<0
(1)比較loga(a2+1)與loga2a的大。
(2)解關(guān)于x的不等式ax+1-
3
x
1
a

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

解關(guān)于x的不等式|ax-1|>a+1(a>-1).

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

解關(guān)于x的不等式ax-
2x
≥2-a

查看答案和解析>>

同步練習冊答案