設(shè)函數(shù)f(x)是定義在R上的偶函數(shù),且在區(qū)間[0,+∞)上單調(diào)遞增,則滿足不等式f(1)<f(lg(2x))的x的取值范圍是
 
考點:函數(shù)奇偶性的性質(zhì)
專題:函數(shù)的性質(zhì)及應(yīng)用
分析:根據(jù)函數(shù)是偶函數(shù),把不等式轉(zhuǎn)化成f(1)<f(|lg(2x)|),就可以利用函數(shù)在區(qū)間[0,+∞)上單調(diào)遞增轉(zhuǎn)化成一般的不等式進(jìn)行求解.
解答: 解:∵函數(shù)f(x)是定義在R上的偶函數(shù),
∴f(1)<f(lg(2x))=f(|lg(2x)|)
∵函數(shù)f(x)在區(qū)間[0,+∞)上單調(diào)遞增,
∴|lg(2x)|>1,即lg(2x)>1或lg(2x)<-1
解得:x>5或0<x<
1
20

所以滿足不等式f(1)<f(lg(2x))的x的取值范圍是(0,
1
20
)∪(5,+∞).
故答案為:(0,
1
20
)∪(5,+∞).
點評:本題考查了利用函數(shù)的奇偶性和單調(diào)性解抽象不等式,解題的關(guān)鍵是利用函數(shù)的奇偶性把自變量轉(zhuǎn)化到同一個單調(diào)區(qū)間上,還要注意函數(shù)的定義域.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

在△ABC中,角A,B,C所對的邊分別為a,b,c,且∠A滿足:2cos2A-2
3
sinAcosA=-1.
(Ⅰ)若a=2
3
,c=2,求△ABC的面積;
(Ⅱ)求
b-2c
a•cos(60°+C)
的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

如圖是某幾何體的三視圖,則該幾何體的外接球的表面積為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

角α的頂點在坐標(biāo)原點O,始邊在y軸的正半軸上,終邊與單位圓交于第三象限內(nèi)的點P,且tanα=-
3
4
;角β的頂點在坐標(biāo)原點O,始邊在x軸的正半軸上,終邊與單位圓交于第二象限內(nèi)的點Q,且tanβ=-2.對于下列結(jié)論:
①P(-
3
5
,-
4
5
);
②|PQ|2=
10+2
5
5
;
③cos∠POQ=-
3
5

④△POQ的面積為
5
5

其中所有正確結(jié)論的序號有
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)實數(shù)x,y滿足
x-y-2≤0
x+2y-5≥0
y-2≤0
,則目標(biāo)函數(shù)z=2x+y取得最大值時的最優(yōu)解為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)a,b均為正實數(shù),則
1
a
+
1
b
+2
ab
的最小值是
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

若函數(shù)y=f(x)與y=ex+2的圖象關(guān)于直線y=x對稱,則f(x)=
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

函數(shù)y=Asin(ωx+φ)的部分圖象如圖所示,其中A>0,ω>0,|φ|<
π
2
,則其解析式為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

執(zhí)行如圖所示的框圖,若輸入如下四個函數(shù):
①f(x)=sinx;    
②f(x)=sin(cosx);
③f(x)=2|x|;     
④f(x)=x2+2x+1
則輸出的函數(shù)是(  )
A、f(x)=sinx
B、f(x)=sin(cosx)
C、f(x)=2|x|
D、f(x)=x2+2x+1

查看答案和解析>>

同步練習(xí)冊答案