5.(1)設(shè)f(x)=$\left\{\begin{array}{l}{{x}^{2},x∈[0,1)}\\{2-x,x∈[1,2]}\end{array}\right.$,求${∫}_{0}^{2}$f(x)dx的值;
(2)若復(fù)數(shù)z1=a+2i(a∈R),z2=3-4i,且$\frac{{z}_{1}}{{z}_{2}}$為純虛數(shù),求|z1|.

分析 (1)根據(jù)分段函數(shù)的積分公式進行計算即可.
(2)根據(jù)純虛數(shù)的定義,建立方程關(guān)系求出a的值,結(jié)合復(fù)數(shù)的模長公式進行計算即可.

解答 解:(1)${∫}_{0}^{2}$f(x)dx=∫${\;}_{0}^{1}$x2dx+∫${\;}_{1}^{2}$(2-x)dx=$\frac{1}{3}$x3|${\;}_{0}^{1}$+(2x-$\frac{1}{2}$x2)|${\;}_{1}^{2}$
=$\frac{1}{3}$+(2×$2-\frac{1}{2}$×22)-(2-$\frac{1}{2}$)=$\frac{1}{3}$+2-$\frac{3}{2}$=$\frac{5}{6}$.
(2)∵$\frac{{z}_{1}}{{z}_{2}}$為純虛數(shù),∴設(shè)$\frac{{z}_{1}}{{z}_{2}}$=bi,b是實數(shù),
則z1=z2bi,即a+2i=(3-4i)bi=4b+3bi,
則$\left\{\begin{array}{l}{a=4b}\\{2=3b}\end{array}\right.$,則a=$\frac{8}{3}$,則|z1|=$\sqrt{{a}^{2}+4}$=$\sqrt{\frac{64}{9}+4}$=$\sqrt{\frac{100}{9}}$=$\frac{10}{3}$.

點評 本題主要考查積分的計算以及復(fù)數(shù)概念的應(yīng)用,利用相應(yīng)的公式是解決本題的關(guān)鍵.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

15.如圖是一個算法流程圖,若輸入x的值為$\frac{1}{16}$,則輸出的y的值是( 。
A.-6B.-2C.2D.6

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

16.設(shè)集合A={x|$\frac{x-2}{x+1}$≤0},B={x|-4≤x≤1},則A∩B=( 。
A.[-1,1]B.[-4,2]C.(-1,1]D.(-1,1)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

13.(Ⅰ)求不等式-x2-2x+3<0的解集(用集合或區(qū)間表示)
(Ⅱ)求不等式|x-3|<1的解集(用集合或區(qū)間表示)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

20.在銳角△ABC中,a,b,c分別是三個內(nèi)角A,B,C的對邊,若2asinB=$\sqrt{3}$b.
(Ⅰ)求A;
(Ⅱ)若a=$\sqrt{7}$,△ABC的面積為$\frac{3\sqrt{3}}{2}$,求△ABC的周長.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

10.在△ABC中,已知AB=2,AC=3,$\overrightarrow{AB}$•$\overrightarrow{AC}$=4,D為△ABC所在平面內(nèi)一點,且滿足$\overrightarrow{AD}$=$\overrightarrow{AB}$+2$\overrightarrow{AC}$.
(1)求|$\overrightarrow{AD}$|;
(2)cos∠BDC.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

17.同時具有下列性質(zhì):“①對任意x∈R,f(x+π)=f(x)恒成立;②圖象關(guān)于點($\frac{π}{12}$,0)中心對稱;③函數(shù)在[-$\frac{π}{6}$,$\frac{π}{3}$]上是增函數(shù)”的函數(shù)可以是(  )
A.f(x)=sin($\frac{x}{2}$+$\frac{π}{6}$)B.f(x)=cos(2x-$\frac{π}{3}$)C.f(x)=cos(2x+$\frac{π}{3}$)D.f(x)=sin(2x-$\frac{π}{6}$)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

1.設(shè)x∈(0,π),函數(shù)f(x)=sin(cosx)-x,g(x)=cos(sinx)-x.則下列說法正確的是(  )
A.f(x),g(x)均有零點B.f(x),g(x)都沒有有零點
C.g(x)有,f(x)沒有D.f(x)有,g(x)沒有

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

2.若一個圓錐的側(cè)面積展開圖是面積為2π的半圓面,則該圓錐的軸截面面積為$\sqrt{3}$.

查看答案和解析>>

同步練習(xí)冊答案