已知函數(shù)f(x)=Asin(ωx+Φ),x∈R(其中A>0,ω>0,0<Φ<
π
2
)的圖象與x軸的交點(diǎn)中,相鄰兩個交點(diǎn)之間的距離為
π
2
,且圖象上一個最低點(diǎn)為M(
3
,-2).
(1)求f(x)的解析式及單調(diào)增區(qū)間;
(2)當(dāng)x∈[0,
π
12
]時,求f(x)的值域.
考點(diǎn):由y=Asin(ωx+φ)的部分圖象確定其解析式,函數(shù)y=Asin(ωx+φ)的圖象變換
專題:計算題,三角函數(shù)的圖像與性質(zhì)
分析:(1)依題意知,A=2,
T
2
=
π
2
,可求得ω=2;再由
3
×2+Φ=2kπ-
π
2
(k∈Z),0<Φ<
π
2
,可求得Φ,從而得f(x)的解析式及單調(diào)增區(qū)間;
(2)當(dāng)x∈[0,
π
12
]時,2x+
π
6
∈[
π
6
,
π
3
],利用正弦函數(shù)的單調(diào)性即可求得其值域.
解答: 解:(1)依題意知,A=2,
T
2
=
π
2
,又ω>0,
∴T=
ω
=π,ω=2;
∴f(x)=2sin(2x+Φ),
∵圖象上一個最低點(diǎn)為M(
3
,-2),
3
×2+Φ=2kπ-
π
2
(k∈Z),
∴Φ=2kπ-
11π
6
(k∈Z),0<Φ<
π
2
,
∴Φ=
π
6
,
∴f(x)=2sin(2x+
π
6
);
由2kπ-
π
2
≤2x+
π
6
≤2kπ+
π
2
(k∈Z)得:kπ-
π
3
≤x≤kπ+
π
6
(k∈Z),
∴f(x)的單調(diào)增區(qū)間為[kπ-
π
3
,kπ+
π
6
](k∈Z);
(2)∵x∈[0,
π
12
],
∴2x+
π
6
∈[
π
6
π
3
],
∴sin(2x+
π
6
)∈[
1
2
3
2
],
∴x∈[0,
π
12
]時,f(x)=2sin(2x+
π
6
)的值域?yàn)閇1,
3
].
點(diǎn)評:本題考查由y=Asin(ωx+φ)的部分圖象確定其解析式,考查正弦函數(shù)的單調(diào)性與值域,考查綜合運(yùn)算與求解能力,屬于中檔題.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

在(-π,2π)內(nèi)與
4
終邊相同的角有( 。﹤.
A、0B、1C、2D、3

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

如圖,E,F(xiàn),G,H分別為正方體AC1的棱A1B1,A1D1,B1C1,D1C1的中點(diǎn),
1)求證:面AEF∥面BDHG;
2)求對角線AC1與底面ABCD所成角的正弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

正方體ABCD-A1B1C1D1的棱長為1,P、Q分別是正方形AA1D1D和A1B1C1D1的中心.
(1)證明:PQ∥平面DD1C1C;     
(2)求PQ與平面AA1D1D所成的角.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

函數(shù)f(x)定義在區(qū)間(0,+∞),y∈R,都有f(xy)=yf(x),且f(x)不恒為零.
(1)求f(1)的值;
(2)若a>b>c>1且b2=ac,求證:f(a)f(c)<[f(b)]2
(3)若f(
1
2
)<0,求證:f(x)在(0,+∞)上是增函數(shù).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=|x-2|-|x-5|,
(1)求函數(shù)f(x)的值域;
(2)解不等式f(x)≥x2-8x+15.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

如圖在棱長為1的正方體ABCD-A1B1C1D1中,M,N分別是線段AB1和BD上的點(diǎn),且AM=BN=t(0<t<
2

(1)求|MN|的最小值
(2)當(dāng)|MN|達(dá)到最小值時,
MN
AB
1,
BD
是否都垂直,如果都垂直給出證明;如果不是都垂直說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)P(x,y)是角θ的終邊上任意一點(diǎn),其中x≠0,y≠0,并記r=
x2+y2
.若定義cotθ=
x
y
,secθ=
r
x
cscθ=
r
y

(Ⅰ)求證sin2θ+cos2θ-tan2θ-cot2θ+sec2θ+csc2θ是一個定值,并求出這個定值;
(Ⅱ)求函數(shù)f(θ)=|sinθ+cosθ+tanθ+cotθ+secθ+cscθ|的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知f(x)=
1
2
sin(x-
π
4
)(0≤x≤π)
,求使f(x)≤cosα恒成立的α的范圍.

查看答案和解析>>

同步練習(xí)冊答案