設(shè)橢圓的兩個焦點(diǎn)為F1(,0)、F2(,0),P為此橢圓上的一點(diǎn),且|PF1|+|PF2|=6.
若P、F1、F2是一直角三角形的三個頂點(diǎn),|PF1|>|PF2|,求的值.
解:由題設(shè)知|PF1|+|PF2|=6,|F1F2|=. 若∠PF2F1為直角,則|PF1|2=|PF2|2+|F1F2|2, 即|PF1|2=(6-|PF1|)2+20. ∴|PF1|=,|PF2|=.∴. 若∠F1PF2為直角,則|F1F2|2=|PF1|2+|PF2|2, 即20=|PF1|2+(6-|PF1|)2, ∴|PF1|=4,|PF2|=2.∴. |
涉及橢圓的焦點(diǎn)和橢圓上一點(diǎn)之間的距離問題,常用橢圓定義來解決,由于△PF1F2的直角頂點(diǎn)未給出,故要討論后分別求解,由|PF1|>|PF2|知∠PF1F2不可能為直角. |
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
x2 |
a2 |
y2 |
b2 |
2 |
| ||
3 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
x2 |
25 |
y2 |
9 |
3 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
(本題滿分14分)
橢圓G:的兩個焦點(diǎn)為F1、F2,短軸兩端點(diǎn)B1、B2,已知
F1、F2、B1、B2四點(diǎn)共圓,且點(diǎn)N(0,3)到橢圓上的點(diǎn)最遠(yuǎn)距離為
(1)求此時橢圓G的方程;
(2)設(shè)斜率為k(k≠0)的直線m與橢圓G相交于不同的兩點(diǎn)E、F,Q為EF的中點(diǎn),問E、F兩點(diǎn)能否關(guān)于過點(diǎn)P(0,)、Q的直線對稱?若能,求出k的取值范圍;若不能,請說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:2010-2011學(xué)年浙江省臺州中學(xué)(上)第二次統(tǒng)練數(shù)學(xué)試卷(理科)(解析版) 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:2010-2011學(xué)年重慶市渝中區(qū)巴蜀中學(xué)高二(上)期末數(shù)學(xué)復(fù)習(xí)試卷(文科)(解析版) 題型:解答題
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com