在△ABC中,=   
【答案】分析:先根據(jù)三階行列式的定義化簡(jiǎn)原行列式,再利用兩角和的正切公式可得到tanA+tanB+tanC=tan(A+B)×(1-tanAtanB)+tanC,展開(kāi)整理可得到tanAtanBtanC,從而可求出原式的值.
解答:解:
=tanAtanBtanC+1+1-tanB-tanA-tanC
=tanAtanBtanC-(tanB+tanA+tanC)+2.
∵tanA+tanB+tanC
=tan(A+B)×(1-tanAtanB)+tanC
=-tanC×(1-tanAtanB)+tanC
=-tanC+tanAtanBtanC+tanC
=tanAtanBtanC,
∴原式=2
故答案為:2.
點(diǎn)評(píng):本題主要考查三階矩陣、兩角和與差的正切公式的應(yīng)用,考查考生的靈活計(jì)算能力.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

在△ABC中,角A,B,C所對(duì)的邊分別為a,b,c,S是該三角形的面積,已知向量
p
=(1,2sinA)
,
q
=(sinA,1+cosA)
,且滿足
p
q

(1)求角A的大小;(2)若a=
3
,S=
3
3
4
,試判斷△ABC的形狀,并說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

在△ABC中,滿足
AB
AC
,|
AB
|=3,|
AC
|=4
,點(diǎn)M在線段BC上.
(1)M為BC中點(diǎn),求
AM
BC
的值;
(2)若|
AM
|=
6
5
5
,求BM:BC的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

在△ABC中,若sinB+cosB=
3
-1
2

(1)求角B的大。
(2)又若tanA+tanC=3-
3
,且∠A>∠C,求角A的大。

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

在△ABC中,已知sinAsinBcosC=sinAsinCcosB+sinBsinCcosA,若a、b、c分別是角A、B、C所對(duì)的邊,則
abc2
的最大值為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

在△ABC中,若A=
C
2
,求證:
1
3
c-a
b
1
2

查看答案和解析>>

同步練習(xí)冊(cè)答案