10.有一堆規(guī)格相同的鐵制(鐵的密度是 7.8g/cm3)六角螺帽共重5.8kg,已知底面是正六邊形,邊長(zhǎng)為12mm,內(nèi)孔直徑為10mm,高為10mm,問(wèn)這堆螺帽大約有多少個(gè)( π取3.14)?

分析 由體積公式得出一個(gè)六角螺帽毛坯的體積為(6×$\frac{\sqrt{3}}{4}$×1.22-$π×\frac{1}{4}$)×1≈2.956(cm3).再運(yùn)用密度公式求解單個(gè)的質(zhì)量,由總質(zhì)量除以單個(gè)的質(zhì)量即可得答案.

解答 解:一個(gè)六角螺帽毛坯的體積為(6×$\frac{\sqrt{3}}{4}$×1.22-$π×\frac{1}{4}$)×1≈2.956(cm3).
∴螺帽的個(gè)數(shù)為:5.8×1000÷(7.8×2.956)≈252(個(gè)).
答:這堆螺帽大約有252個(gè).

點(diǎn)評(píng) 本題考查柱體體積公式,考查了推理能力與計(jì)算能力,注意單位的換算,屬于基礎(chǔ)題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

5.在極坐標(biāo)系中,已知圓C的極坐標(biāo)方程為ρ2-2$\sqrt{2}ρcos({θ-\frac{π}{4}})+1=0$,以極點(diǎn)為平面直角坐標(biāo)系的原點(diǎn),極軸為x軸的正半軸,建立平面直角坐標(biāo)系.
(Ⅰ)求圓C的直角坐標(biāo)方程并寫(xiě)出圓心坐標(biāo)和半徑;
(Ⅱ)若$θ∈({0,\frac{π}{3}}]$,直線l的參數(shù)方程為$\left\{{\begin{array}{l}{x=2+tcosθ}\\{y=2+tsinθ}\end{array}}$(t為參數(shù)),點(diǎn)P的直角坐標(biāo)為(2,2),直線l交圓C于A,B兩點(diǎn),求$\frac{{|{PA}|•|{PB}|}}{{|{PA}|+|{PB}|}}$的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

1.已知中心在坐標(biāo)原點(diǎn),焦點(diǎn)在x軸上的橢圓過(guò)點(diǎn)A(-3,0),且離心率$e=\frac{{\sqrt{5}}}{3}$,則橢圓的標(biāo)準(zhǔn)方程是(  )
A.$\frac{x^2}{9}+\frac{{4{y^2}}}{81}=1$B.$\frac{x^2}{4}+\frac{y^2}{9}=1$C.$\frac{{4{x^2}}}{81}+\frac{y^2}{9}=1$D.$\frac{x^2}{9}+\frac{y^2}{4}=1$

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

18.已知x,y滿足約束條件$\left\{\begin{array}{l}{x≥1}&{\;}\\{y≥-1}&{\;}\\{4x+y≤9}&{\;}\\{x+y≤3}&{\;}\end{array}\right.$,若目標(biāo)函數(shù)z=mx+y(m>0)的最大值為1,則m的值是1.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

5.馬路上9盞路燈,為了節(jié)約用電可以關(guān)掉3盞路燈,但兩端2盞不能關(guān)掉,也不能同時(shí)關(guān)掉相鄰的2盞或3盞,這樣的關(guān)燈方法有( 。
A.56種B.36種C.20種D.10種

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

15.已知函數(shù)f(x)=cos2x+$\sqrt{3}$sinxcosx+1,x∈R.
(1)求f(x)的小正周期和單調(diào)遞增區(qū)間.
(2)求f(x)在x$∈[{-\frac{π}{4},\left.{\frac{π}{4}}]}$的值域.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

2.已知P是邊長(zhǎng)為2的等邊三角形ABC的邊BC上的動(dòng)點(diǎn),則$\overrightarrow{AP}•({\overrightarrow{AB}+\overrightarrow{AC}})$的值下列判斷正確的是(  )
A.有最大值為8B.是定值8C.有最大值為6D.是定值6

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

19.若變量x,y滿足約束條件$\left\{\begin{array}{l}{x-y≤0}\\{x+y≤2}\\{x≥0}\end{array}\right.$,則z=x+2y的最大值為(  )
A.0B.2C.3D.4

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

20.已知直線l1:3x+4y-3=0,直線l2:6x+8y-1=0(b∈R)平行,則它們之間的距離為( 。
A.2B.$\frac{1}{5}$C.1D.$\frac{1}{2}$

查看答案和解析>>

同步練習(xí)冊(cè)答案