函數(shù)y=lnx2的定義域是
 
考點:對數(shù)函數(shù)的定義域
專題:計算題,函數(shù)的性質及應用
分析:要使函數(shù)有意義,則x2>0,解得即可得到定義域.
解答: 解:要使函數(shù)有意義,則x2>0,
解得x≠0,且x∈R,
則定義域為:{x|x≠0,且x∈R},
故答案為:{x|x≠0,且x∈R}
點評:本題考查函數(shù)的定義域的求法,注意對數(shù)的真數(shù)必須大于0,屬于基礎題.
練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

已知函數(shù)f(x)=
x
x+1
,若a>0,b>0,c>0,a+b>c,則( 。
A、f(a)+f(b)>f(c)
B、f(a)+f(b)=f(c)
C、f(a)+f(b)<f(c)
D、以上結論都不對

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知x>0時,(x-1)f′(x)<0,若△ABC是銳角三角形,則一定成立的是( 。
A、f(sinA)>f(cosB)
B、f(sinA)<f(cosB)
C、f(sinA)>f(sinB)
D、f(cosA)>f(cosB)

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知直線系l的方程xcosθ+(y-2)sinθ=1(其中θ是常數(shù),且0≤θ≤2π),若該直線系所圍成的集合圖形為M.
(1)試用代數(shù)式表示圖形M;
(2)若點(x,y)在M中,試求
y+1
x+2
的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

若函數(shù)f(x)=x2+4x+a的定義域和值域均為[-2,b](b>-2),求a,b的值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知
a
=(
3
,cosωx),
b
=(sinωx,-1),(0<ω<3,x∈R).函數(shù)f(x)=
a
b
,若將函數(shù)f(x)的圖象向左平移
π
3
個單位,則得到y(tǒng)=g(x)的圖象,且函數(shù)y=g(x)為偶函數(shù).
(Ⅰ)求函數(shù)f(x)的解析式及其單調增區(qū)間;
(Ⅱ)若f(
α
2
)=
1
2
,(
π
6
<α<
2
3
π)
,求sinα的值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

(理科)如圖,邊長為2的正方形ABCD和正方形ABEF所在的面所成角為60°,M和N分別是AC和BF上的點,且AM=FN,求線段MN長的取值范圍( 。
A、[0.5,2]
B、[1.5,2]
C、[
2
,2]
D、[1,2]

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

sin570°=
 

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

若函數(shù)f(x)的定義域和值域均為區(qū)間G,則稱區(qū)間G為函數(shù)f(x)的“管控區(qū)間”.
(1)求函數(shù)f(x)=x2-2x形如[a,+∞)(a∈R)的“管控區(qū)間”;
(2)函數(shù)g(x)=|1-
1
x
|(x>0)是否存在形如[a,b]的“管控區(qū)間”,若存在,求出實數(shù)a、b的值,若不存在,請說明理由.

查看答案和解析>>

同步練習冊答案