方程(x+y-1)
x2+y2-4
=0所表示的曲線是
 
考點(diǎn):圓的一般方程
專題:直線與圓
分析:由題意可得x2+y2-4≥0,還有x+y-1=0或 x2+y2=4,從而得出結(jié)論.
解答: 解:由題意可得x2+y2-4≥0,表示的區(qū)域是以原點(diǎn)為圓心的圓的外部以及圓上的部分.
由方程(x+y-1)
x2+y2-4
=0,可得x+y-1=0,或 x2+y2=4,
故原方程表示一條直線在圓外的地方和一個(gè)圓,即兩條射線和一個(gè)圓,
故答案為:兩條射線和一個(gè)圓.
點(diǎn)評(píng):本題主要考查直線和圓的方程的特征,屬于基礎(chǔ)題.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

函數(shù)y=
-x2+2x+3
的單調(diào)減區(qū)間為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

某同學(xué)同時(shí)拋擲兩顆骰子,得到的點(diǎn)數(shù)分別記為a、b,則雙曲線
x2
a2
-
y2
b2
=1的離心率e
5
的概率是( 。
A、
1
6
B、
1
4
C、
1
3
D、
1
36

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

橢圓x2+
y2
4
=1短軸的左右兩個(gè)端點(diǎn)分別為A,B,直線l過定點(diǎn)(0,1)交橢圓于兩點(diǎn)C,D.
(1)若l與x軸、y軸分別交于兩點(diǎn)E,F(xiàn),
CE
=
FD
,求直線l的方程:
(2)設(shè)直線AD,CB的斜率分別為k1k2,若k1:k2=2:1,求k的值.
(3)(理)設(shè)C(x1,y1),D(x2,y2),分別過C、D作斜率為-
4x1
y1
和-
4x2
y2
兩條直線l1和l2.記l1和l2的交點(diǎn)為M,求△MCD面積的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知定義在正實(shí)數(shù)集上的函數(shù)f(x)=
1
2
x2+2ax,g(x)=3a2
lnx+b,其中a>0,若兩曲線y=f(x),y=g(x)在某公共點(diǎn)處的切線相同.
(1)用a表示b,求b的最大值,并判斷方程f(x)=g(x)(x>0)的解的個(gè)數(shù);
(2)若a=1,正項(xiàng)數(shù)列{an}滿足a1=2,an+1=f(an)(n∈N*),求證:
1
a1
+
1
a2
+…+
1
an
3
4

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

根據(jù)條件sinα<0且cosα<0,確定θ是第
 
象限的角.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

3-
1
2
=
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

關(guān)于f(x)=3sin(2x+
π
4
)有如下命題:其中正確的判斷是
 

①若f(x1)=f(x2)=0,則x1-x2是π的整數(shù)倍;
②函數(shù)解析式可改為f(x)=3cos(2x-
π
4
);
③函數(shù)圖象關(guān)于x=-
π
8
對(duì)稱;
④函數(shù)f(x)是奇函數(shù).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=
1
2x-1
+a為奇函數(shù),
(1)求定義域和a的值;
(2)求證:f(x)在x∈(0,+∞)上單調(diào)遞減,解不等式f(m+1)+f(-2m+3)<0.

查看答案和解析>>

同步練習(xí)冊(cè)答案