14.設(shè)有兩個(gè)命題,p:關(guān)于x的不等式ax>1(a>0,且a≠1)的解集是{x|x<0};q:函數(shù)y=lg(ax2-x+a)的定義域?yàn)镽.如果p∨q為真命題,p∧q為假命題,則實(shí)數(shù)a的取值范圍是$0<a≤\frac{1}{2}$或a≥1.

分析 p:關(guān)于x的不等式ax>1(a>0,且a≠1)的解集是{x|x<0},則0<a<1;q:函數(shù)y=lg(ax2-x+a)的定義域?yàn)镽,a=0時(shí)不成立,a≠0時(shí),則$\left\{\begin{array}{l}{a>0}\\{△=1-4{a}^{2}<0}\end{array}\right.$,解得a范圍.如果p∨q為真命題,p∧q為假命題,則命題p與q必然一真一假.

解答 解:p:關(guān)于x的不等式ax>1(a>0,且a≠1)的解集是{x|x<0},則0<a<1;
q:函數(shù)y=lg(ax2-x+a)的定義域?yàn)镽,a=0時(shí)不成立,a≠0時(shí),則$\left\{\begin{array}{l}{a>0}\\{△=1-4{a}^{2}<0}\end{array}\right.$,解得$0<a<\frac{1}{2}$.
如果p∨q為真命題,p∧q為假命題,則命題p與q必然一真一假.
∴$\left\{\begin{array}{l}{0<a<1}\\{a≤0或a≥\frac{1}{2}}\end{array}\right.$,或$\left\{\begin{array}{l}{a≤0或a≥1}\\{0<a<\frac{1}{2}}\end{array}\right.$,
解得$\frac{1}{2}≤a<1$
則實(shí)數(shù)a的取值范圍是.
故答案為:$0<a≤\frac{1}{2}$或a≥1.

點(diǎn)評(píng) 本題考查了函數(shù)的單調(diào)性、不等式的解法、簡(jiǎn)易邏輯的判定方法,考查了推理能力與計(jì)算能力,屬于中檔題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

6.如圖1,邊長(zhǎng)為4的正方形ABCD中,點(diǎn)E,F(xiàn)分別是邊AB,BC的中點(diǎn),將△AED,△DCF分別沿DE,DF折起,使A,C兩點(diǎn)重合于點(diǎn)P如圖2.
(Ⅰ)求證:DP⊥EF;
(Ⅱ)求四棱錐P-BFDE的體積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

5.已知tanx=-$\frac{1}{2}$,則2sinxcosx=( 。
A.-$\frac{4}{5}$B.-3C.-$\frac{7}{5}$D.-$\frac{11}{5}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

2.已知集合A={x|(x-6)(x+2)<0},B={x|x-1>0},則A∩B等于( 。
A.(1,6)B.(-1,6)C.(-2,1)D.(-1,2)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

9.生產(chǎn)甲乙兩種精密電子產(chǎn)品,用以下兩種方案分別生產(chǎn)出甲乙產(chǎn)品共3件,現(xiàn)對(duì)這兩種方案生產(chǎn)的產(chǎn)品分別隨機(jī)調(diào)查了100次,得到如下統(tǒng)計(jì)表:
①生產(chǎn)2件甲產(chǎn)品和1件乙產(chǎn)品
正次品甲正品
甲正品
乙正品
甲正品
甲正品
乙次品
甲正品
甲次品
乙正品
甲正品
甲次品
乙次品
甲次品
甲次品
乙正品
甲次品
甲次品
乙次品
頻  數(shù)15201631108
②生產(chǎn)1件甲產(chǎn)品和2件乙產(chǎn)品
正次品乙正品
乙正品
甲正品
乙正品
乙正品
甲次品
乙正品
乙次品
甲正品
乙正品
乙次品
甲次品
乙次品
乙次品
甲正品
乙次品
乙次品
甲次品
頻  數(shù)81020222020
已知生產(chǎn)電子產(chǎn)品甲1件,若為正品可盈利20元,若為次品則虧損5元;生產(chǎn)電子產(chǎn)品乙1件,若為正品可盈利30元,若為次品則虧損15元.
(1)按方案①生產(chǎn)2件甲產(chǎn)品和1件乙產(chǎn)品,求這3件產(chǎn)品平均利潤(rùn)的估計(jì)值;
(2)從方案①②中選其一,生產(chǎn)甲乙產(chǎn)品共3件,欲使3件產(chǎn)品所得總利潤(rùn)大于30元的機(jī)會(huì)多,應(yīng)選用哪個(gè)?

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

19.設(shè)i為虛數(shù)單位,則復(fù)數(shù)$z=\frac{1-i}{1+i}$的模為( 。
A.1B.$\sqrt{2}$C.$\sqrt{3}$D.2

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

6.2017年3月27日,一則“清華大學(xué)要求從2017級(jí)學(xué)生開(kāi)始,游泳達(dá)到一定標(biāo)準(zhǔn)才能畢業(yè)”的消息在體育界和教育界引起了巨大反響.游泳作為一項(xiàng)重要的求生技能和運(yùn)動(dòng)項(xiàng)目受到很多人的喜愛(ài).其實(shí),已有不少高校將游泳列為必修內(nèi)容.某中學(xué)為了解2017屆高三學(xué)生的性別和喜愛(ài)游泳是否有關(guān),對(duì)100名高三學(xué)生進(jìn)行了問(wèn)卷調(diào)查,得到如下列聯(lián)表:
喜歡游泳不喜歡游泳合計(jì)
男生10
女生20
合計(jì)
已知在這100人中隨機(jī)抽取1人,抽到喜歡游泳的學(xué)生的概率為$\frac{3}{5}$.
(Ⅰ)請(qǐng)將上述列聯(lián)表補(bǔ)充完整;
(Ⅱ)判斷是否有99.9%的把握認(rèn)為喜歡游泳與性別有關(guān)?
附:${K^2}=\frac{{n{{(ad-bc)}^2}}}{(a+b)(c+d)(a+c)(b+d)}$
p(K2≥k00.100.050.0250.0100.0050.001
k02.7063.8415.0246.6357.87910.828

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

3.把函數(shù)f(x)=$\sqrt{3}$cos2x-sin2x的圖象向右平移$\frac{π}{12}$個(gè)單位得到函數(shù)y=g(x)的圖象,則函數(shù)y=g(x)在下列哪個(gè)區(qū)間是單調(diào)遞減的(  )
A.[-$\frac{π}{2}$,0]B.[-π,0]C.[-$\frac{π}{4}$,$\frac{π}{4}$]D.[0,$\frac{π}{2}$]

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

4.在平面直角坐標(biāo)系 xOy中,已知拋物線E:y2=2px(p>0)的焦點(diǎn)為F,P是拋物線 E上位于第一象限內(nèi)的任意一點(diǎn),Q是線段 PF上的點(diǎn),且滿足$\overrightarrow{OQ}=\frac{2}{3}\overrightarrow{OP}+\frac{1}{3}\overrightarrow{OF}$,則直線 OQ的斜率的最大值為(  )
A.$\frac{{\sqrt{2}}}{2}$B.$\sqrt{3}$C.1D.$\sqrt{2}$

查看答案和解析>>

同步練習(xí)冊(cè)答案